The Ginibre Ensemble of Real Random Matrices and its Scaling Limits

被引:0
|
作者
A. Borodin
C. D. Sinclair
机构
[1] California Institute of Technology,Mathematics 253
[2] University of Colorado,37
来源
关键词
Correlation Function; Point Process; Random Matrix; Matrix Kernel; Scaling Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2 × 2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.
引用
收藏
页码:177 / 224
页数:47
相关论文
共 50 条
  • [1] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    Borodin, A.
    Sinclair, C. D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 177 - 224
  • [2] Erratum to: The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    Alexei Borodin
    Mihail Poplavskyi
    Christopher D. Sinclair
    Roger Tribe
    Oleg Zaboronski
    Communications in Mathematical Physics, 2016, 346 : 1051 - 1055
  • [3] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits (vol 291, pg 177, 2009)
    Borodin, Alexei
    Poplavskyi, Mihail
    Sinclair, Christopher D.
    Tribe, Roger
    Zaboronski, Oleg
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 1051 - 1055
  • [4] Averages over Ginibre's Ensemble of Random Real Matrices
    Sinclair, Christopher D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [5] Statistics of real eigenvalues in Ginibre's ensemble of random real matrices
    Kanzieper, E
    Akemann, G
    PHYSICAL REVIEW LETTERS, 2005, 95 (23)
  • [6] Universal scaling limits of the symplectic elliptic Ginibre ensemble
    Byun, Sung-Soo
    Ebke, Markus
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (01)
  • [7] Induced Ginibre ensemble of random matrices and quantum operations
    Fischmann, Jonit
    Bruzda, Wojciech
    Khoruzhenko, Boris A.
    Sommers, Hans-Juergen
    Zyczkowski, Karol
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [8] Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem
    Gernot Akemann
    Eugene Kanzieper
    Journal of Statistical Physics, 2007, 129 : 1159 - 1231
  • [9] Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem
    Akemann, Gernot
    Kanzieper, Eugene
    JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (5-6) : 1159 - 1231
  • [10] Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits
    Kuijlaars, Arno B. J.
    Zhang, Lun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) : 759 - 781