The Ginibre Ensemble of Real Random Matrices and its Scaling Limits

被引:0
|
作者
A. Borodin
C. D. Sinclair
机构
[1] California Institute of Technology,Mathematics 253
[2] University of Colorado,37
来源
关键词
Correlation Function; Point Process; Random Matrix; Matrix Kernel; Scaling Limit;
D O I
暂无
中图分类号
学科分类号
摘要
We give a closed form for the correlation functions of ensembles of a class of asymmetric real matrices in terms of the Pfaffian of an antisymmetric matrix formed from a 2 × 2 matrix kernel associated to the ensemble. We apply this result to the real Ginibre ensemble and compute the bulk and edge scaling limits of its correlation functions as the size of the matrices becomes large.
引用
收藏
页码:177 / 224
页数:47
相关论文
共 50 条
  • [11] Singular Values of Products of Ginibre Random Matrices, Multiple Orthogonal Polynomials and Hard Edge Scaling Limits
    Arno B. J. Kuijlaars
    Lun Zhang
    Communications in Mathematical Physics, 2014, 332 : 759 - 781
  • [12] The Real Ginibre Ensemble with Real Eigenvalues
    del Molino, Luis Carlos Garcia
    Pakdaman, Khashayar
    Touboul, Jonathan
    Wainrib, Gilles
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 303 - 323
  • [13] Symplectic structure of the real Ginibre ensemble
    Sommers, Hans-Juergen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : F671 - F676
  • [14] EXTREMAL LAWS FOR THE REAL GINIBRE ENSEMBLE
    Rider, Brian
    Sinclair, Christopher D.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1621 - 1651
  • [15] Spectral moments of the real Ginibre ensemble
    Byun, Sung-Soo
    Forrester, Peter J.
    RAMANUJAN JOURNAL, 2024, 64 (04): : 1497 - 1519
  • [16] Eigenvalue statistics of the real Ginibre ensemble
    Forrester, Peter J.
    Nagao, Taro
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [17] A Real Quaternion Spherical Ensemble of Random Matrices
    Anthony Mays
    Journal of Statistical Physics, 2013, 153 : 48 - 69
  • [18] A Real Quaternion Spherical Ensemble of Random Matrices
    Mays, Anthony
    JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (01) : 48 - 69
  • [19] ON THE DISTRIBUTION OF THE LARGEST REAL EIGENVALUE FOR THE REAL GINIBRE ENSEMBLE
    Poplavskyi, Mihail
    Tribe, Roger
    Zaboronski, Oleg
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1395 - 1413
  • [20] Singular Values of Products of Ginibre Random Matrices
    Witte, N. S.
    Forrester, P. J.
    STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) : 135 - 184