THE LARGEST REAL EIGENVALUE IN THE REAL GINIBRE ENSEMBLE AND ITS RELATION TO THE ZAKHAROV-SHABAT SYSTEM

被引:11
|
作者
Baik, Jinho [1 ]
Bothner, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Kings Coll London, Dept Math, London, England
来源
ANNALS OF APPLIED PROBABILITY | 2020年 / 30卷 / 01期
关键词
Real Ginibre ensemble; extreme value statistics; Riemann-Hilbert problem; Zakharov-Shabat system; inverse scattering theory; Deift-Zhou nonlinear steepest descent method; FREDHOLM DETERMINANTS; RANDOM MATRICES; SOLVABILITY;
D O I
10.1214/19-AAP1509
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The real Ginibre ensemble consists of n x n real matrices X whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius R-n = max(1 <= j <= n) vertical bar z(j)(X)vertical bar of the eigenvalues z(j)(X) is an element of C of a real Ginibre matrix X follows a different limiting law (as n -> infinity) for z(j) (X) is an element of R than for z(j) (X) is an element of C\R. Building on previous work by Rider and Sinclair (Ann. Appl. Probab. 24 (2014) 1621-1651) and Poplavskyi, Tribe and Zaboronski (Ann. Appl. Probab. 27 (2017) 1395-1413), we show that the limiting distribution of max(j:zj is an element of R) z(j)(X) admits a closed-form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. As byproducts of our analysis, we also obtain a new determinantal representation for the limiting distribution of max(j:zj is an element of R) z(j)(X) and extend recent tail estimates in (Ann. Appl. Probab. 27 (2017) 1395-1413) via nonlinear steepest descent techniques.
引用
收藏
页码:460 / 501
页数:42
相关论文
共 50 条
  • [21] Zakharov-Shabat system and hyperbolic pseudoanalytic function theory
    Kravchenko, Viktor G.
    Kravchenko, Vladislav V.
    Tremblay, Sebastien
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (04) : 448 - 453
  • [22] The generalised Zakharov-Shabat system and the gauge group action
    Grahovski, Georgi G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [23] Rayleigh-Ritz procedure for the Zakharov-Shabat system
    Jaworski, M
    PHYSICAL REVIEW E, 1997, 56 (05): : 6142 - 6146
  • [24] The Real Ginibre Ensemble with Real Eigenvalues
    del Molino, Luis Carlos Garcia
    Pakdaman, Khashayar
    Touboul, Jonathan
    Wainrib, Gilles
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 303 - 323
  • [25] MARCHENKO EQUATIONS AND NORMING CONSTANTS OF THE MATRIX ZAKHAROV-SHABAT SYSTEM
    Demontis, Francesco
    van der Mee, Cornelis
    OPERATORS AND MATRICES, 2008, 2 (01): : 79 - 113
  • [26] On the Jost Solutions of the Zakharov-Shabat System with a Polynomial Dependence in the Potential
    Nabiev, Anar Adiloglu
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 1070 - 1078
  • [27] GAUGE TRANSFORMATIONS AND GENERATING OPERATORS FOR THE DISCRETE ZAKHAROV-SHABAT SYSTEM
    GERDJIKOV, VS
    IVANOV, MI
    VAKLEV, YS
    INVERSE PROBLEMS, 1986, 2 (04) : 413 - 432
  • [28] Real eigenvalues of a non-self-adjoint perturbation of the self-adjoint Zakharov-Shabat operator
    Hirota, K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [29] Right and left inverse scattering problems formulations for the Zakharov-Shabat system
    Chernyavsky, Alexander E.
    Frumin, Leonid L.
    Gelash, Andrey A.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (04): : 701 - 712
  • [30] Soliton solutions and gauge equivalence for the problem of Zakharov-Shabat and its generalizations
    Vaklev, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1393 - 1413