MDSIMAID: Automatic parameter optimization in fast electrostatic algorithms

被引:5
|
作者
Crocker, MS
Hampton, SS
Matthey, T
Izaguirre, JA [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Bergen, Parallab, N-5020 Bergen, Norway
[3] Univ Bergen, Bergen Ctr Computat Sci, N-5020 Bergen, Norway
关键词
automatic parameter optimization; fast electrostatic algorithms;
D O I
10.1002/jcc.20240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MDSIMAID is a recommender system that optimizes parallel Particle Mesh Ewald (PME) and both sequential and parallel multigrid (MG) summation fast electrostatic solvers. MDSIMAID optimizes the running time or parallel scalability of these methods within a given error tolerance. MDSIMAID performs a run time constrained search on the parameter space of each method starting from semiempirical performance models. Recommended parameters are presented to the user. MDSIMAID'S optimization of MG leads to configurations that are up to 14 times faster or 17 times more accurate than published recommendations. Optimization of PME can improve its parallel scalability, making it run twice as fast in parallel in our tests. MDSIMAID and its Python source code are accessible through a Web portal located at http://mdsimaid.cse.nd.edu. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [41] Automatic Parameter Tuning using Bayesian Optimization Method
    Huang, Changwu
    Yuan, Bo
    Li, Yuanxiang
    Yao, Xin
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2090 - 2097
  • [42] An automatic learning technique for parameter optimization in inverse planning
    Stieler, F.
    Yan, H.
    Willett, C. G.
    Yin, F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (03): : S691 - S691
  • [43] Comparison of optimization algorithms in parameter calibration of tank model
    Kim, JH
    Paik, KR
    Lee, DR
    Kim, HS
    DEVELOPMENT, PLANNING AND MANAGEMENT OF SURFACE AND GROUND WATER RESOURCES, THEME A, PROCEEDINGS, 2001, : 272 - 277
  • [44] A parameter optimization method in predicting algorithms for smart living
    Li, Xiaohui
    Dong, Hongbin
    Yu, Xiaodong
    COMPUTER COMMUNICATIONS, 2022, 191 : 315 - 326
  • [45] Error Analysis of Optimization Algorithms in Ultrasonic Parameter Estimation
    Aditya, N. Ram
    Abhijeeth, K. Sri
    Anuraj, K.
    Poorna, S. S.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 115 - 117
  • [46] Hyper-parameter Optimization Using Continuation Algorithms
    Rojas-Delgado, Jairo
    Jimenez, J. A.
    Bello, Rafael
    Lozano, J. A.
    METAHEURISTICS, MIC 2022, 2023, 13838 : 365 - 377
  • [47] Optimal Parameter Regions for Particle Swarm Optimization Algorithms
    Harrison, Kyle Robert
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 349 - 356
  • [48] Parameter Identification of Rheological Models Using Optimization Algorithms
    Pistek, V.
    Novotny, P.
    Mauder, T.
    Klimes, L.
    MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 193 - 198
  • [49] Parameter Optimization and Simulation of NC Lathe Automatic Programming
    Zhu, Xiurong
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMPUTER AND SOCIETY (EMCS 2017), 2017, 61 : 834 - 838
  • [50] The program system for automated parameter tuning of optimization algorithms
    Agasiev, T.
    Karpenko, A.
    XII INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2016, (INTELS 2016), 2017, 103 : 347 - 354