MDSIMAID: Automatic parameter optimization in fast electrostatic algorithms

被引:5
|
作者
Crocker, MS
Hampton, SS
Matthey, T
Izaguirre, JA [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Bergen, Parallab, N-5020 Bergen, Norway
[3] Univ Bergen, Bergen Ctr Computat Sci, N-5020 Bergen, Norway
关键词
automatic parameter optimization; fast electrostatic algorithms;
D O I
10.1002/jcc.20240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MDSIMAID is a recommender system that optimizes parallel Particle Mesh Ewald (PME) and both sequential and parallel multigrid (MG) summation fast electrostatic solvers. MDSIMAID optimizes the running time or parallel scalability of these methods within a given error tolerance. MDSIMAID performs a run time constrained search on the parameter space of each method starting from semiempirical performance models. Recommended parameters are presented to the user. MDSIMAID'S optimization of MG leads to configurations that are up to 14 times faster or 17 times more accurate than published recommendations. Optimization of PME can improve its parallel scalability, making it run twice as fast in parallel in our tests. MDSIMAID and its Python source code are accessible through a Web portal located at http://mdsimaid.cse.nd.edu. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [21] Automatic Parameter Optimization for a Dynamic Robot Simulation
    Laue, Tim
    Hebbel, Matthias
    ROBOCUP 2008: ROBOT SOCCER WORLD CUP XII, 2009, 5399 : 121 - +
  • [22] AUTOMATIC PARAMETER OPTIMIZATION FOR A PERCEPTUAL AUDIO CODEC
    Holters, Martin
    Zoelzer, Udo
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 13 - 16
  • [23] Evolutionary Algorithms for Constrained Parameter Optimization Problems
    Michalewicz, Zbigniew
    Schoenauer, Marc
    EVOLUTIONARY COMPUTATION, 1996, 4 (01) : 1 - 32
  • [24] APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION
    Belavendram, N.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2010, 2 : 211 - 220
  • [25] Comparison of parameter optimization algorithms for environmental model
    Liu, Yi
    Chen, Jining
    Du, Pengfei
    Huanjing Kexue/Environmental Science, 2002, 23 (02):
  • [26] Capping methods for the automatic configuration of optimization algorithms
    de Souza, Marcelo
    Ritt, Marcus
    Lopez-Ibanez, Manuel
    COMPUTERS & OPERATIONS RESEARCH, 2022, 139
  • [27] Electrostatic energy calculation and parameter optimization in computer molecular simulation
    Lu, GW
    Li, CX
    Wang, WC
    Wang, ZH
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2004, 17 (05) : 547 - 553
  • [28] Genetic algorithms for automatic algorithm and parameter selection in ATR applications
    Ducksbury, PG
    Varga, MJ
    Kent, PJ
    Foulkes, S
    Booth, DM
    AUTOMATIC TARGET RECOGNITION VIII, 1998, 3371 : 141 - 151
  • [29] Video segmentation using genetic algorithms with automatic parameter adaptation
    Kim, EY
    ELECTRONICS LETTERS, 2004, 40 (24) : 1530 - 1531
  • [30] Automatic approach to parameter scaling in induction motor control algorithms
    Rodic, Miran
    Rupar, Uros
    Korelic, Joze
    Jezernik, Karel
    2006 12TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 2006, : 1772 - +