MDSIMAID: Automatic parameter optimization in fast electrostatic algorithms

被引:5
|
作者
Crocker, MS
Hampton, SS
Matthey, T
Izaguirre, JA [1 ]
机构
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[2] Univ Bergen, Parallab, N-5020 Bergen, Norway
[3] Univ Bergen, Bergen Ctr Computat Sci, N-5020 Bergen, Norway
关键词
automatic parameter optimization; fast electrostatic algorithms;
D O I
10.1002/jcc.20240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MDSIMAID is a recommender system that optimizes parallel Particle Mesh Ewald (PME) and both sequential and parallel multigrid (MG) summation fast electrostatic solvers. MDSIMAID optimizes the running time or parallel scalability of these methods within a given error tolerance. MDSIMAID performs a run time constrained search on the parameter space of each method starting from semiempirical performance models. Recommended parameters are presented to the user. MDSIMAID'S optimization of MG leads to configurations that are up to 14 times faster or 17 times more accurate than published recommendations. Optimization of PME can improve its parallel scalability, making it run twice as fast in parallel in our tests. MDSIMAID and its Python source code are accessible through a Web portal located at http://mdsimaid.cse.nd.edu. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:1021 / 1031
页数:11
相关论文
共 50 条
  • [31] Combinatorial Algorithms for Fast Clock Mesh Optimization
    Venkataraman, Ganesh
    Feng, Zhuo
    Hu, Jiang
    Li, Peng
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2010, 18 (01) : 131 - 141
  • [32] Optimization of fast block motion estimation algorithms
    Zeng, B
    Li, RX
    Liou, ML
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1997, 7 (06) : 833 - 844
  • [33] Fast algorithms for positional optimization of dynamic systems
    Gabasov, R
    Kirillova, FM
    FAST SOLUTION OF DISCRETIZED OPTIMIZATION PROBLEMS, 2001, 138 : 107 - 119
  • [34] Combinatorial algorithms for fast clock mesh optimization
    Venkataraman, Ganesh
    Feng, Zhuo
    Hu, Jiang
    Li, Peng
    IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, DIGEST OF TECHNICAL PAPERS, ICCAD, 2006, : 731 - +
  • [35] Fast proximal algorithms for nonsmooth convex optimization
    Ouorou, Adam
    OPERATIONS RESEARCH LETTERS, 2020, 48 (06) : 777 - 783
  • [36] Parameter Optimization of Ultrasonic Machining Process Using Nontraditional Optimization Algorithms
    Rao, Ravipudi Venkata
    Pawar, P. J.
    Davim, J. P.
    MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (10) : 1120 - 1130
  • [37] Automatic hyperparameter tuning of topology optimization algorithms using surrogate optimization
    Ha, Dat
    Carstensen, Josephine
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (09)
  • [38] Parameter optimization for image segmentation algorithms: A systematic approach
    Singh, M
    Singh, S
    Partridge, D
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 2, PROCEEDINGS, 2005, 3687 : 11 - 19
  • [39] Robust Algorithms for Filtering and Parameter Optimization in Inverse Problems
    Owusu, Robert K. A.
    2009 2ND INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES (ISABEL 2009), 2009, : 407 - 416
  • [40] Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization
    Koziel, Slawomir
    Michalewicz, Zbigniew
    EVOLUTIONARY COMPUTATION, 1999, 7 (01) : 19 - 44