Optimal Parameter Regions for Particle Swarm Optimization Algorithms

被引:0
|
作者
Harrison, Kyle Robert [1 ]
Ombuki-Berman, Beatrice M. [2 ]
Engelbrecht, Andries P. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, Pretoria, South Africa
[2] Brock Univ, Dept Comp Sci, St Catharines, ON, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
CONVERGENCE ANALYSIS; STABILITY ANALYSIS; SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle swarm optimization (PSO) is a stochastic search algorithm based on the social dynamics of a flock of birds. The performance of the PSO algorithm is known to be sensitive to the values assigned to its control parameters. While many studies have provided reasonable ranges in which to initialize the parameters based on their long-term behaviours, such previous studies fail to quantify the empirical performance of parameter configurations across a wide variety of benchmark problems. This paper specifically address this issue by examining the performance of a set of 1012 parameter configurations of the PSO algorithm over a set of 22 benchmark problems using both the global-best and local-best topologies. Results indicate that, in general, parameter configurations which are within close proximity to the boundaries of the best-known theoretically-defined convergent region lead to better performance than configurations which are further away. Moreover, results indicate that neighbourhood topology plays a far more significant role than modality and separability when determining the regions in parameter space which perform well.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [1] An Adaptive Particle Swarm Optimization Algorithm Based on Optimal Parameter Regions
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1606 - 1613
  • [2] Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 41 : 20 - 35
  • [3] Optimal parameter selection in image similarity evaluation algorithms using Particle Swarm Optimization
    Kameyama, Keisuke
    Oka, Nozomi
    Toraichi, Kazuo
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1064 - +
  • [4] A Particle Swarm Optimization Approach for Estimating Parameter Confidence Regions
    Koduru, Praveen
    Welch, Stephen M.
    Das, Sanjoy
    [J]. GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 70 - +
  • [5] An Investigation on Hybrid Particle Swarm Optimization Algorithms for Parameter Optimization of PV Cells
    Singh, Abha
    Sharma, Abhishek
    Rajput, Shailendra
    Bose, Amarnath
    Hu, Xinghao
    [J]. ELECTRONICS, 2022, 11 (06)
  • [6] Optimal Parameter Estimation of Solar PV Panel Based on Hybrid Particle Swarm and Grey Wolf Optimization Algorithms
    Rezk, Hegazy
    Arfaoui, Jouda
    Gomaa, Mohamed R.
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 6 (06): : 145 - 155
  • [7] Particle Swarm Optimization algorithms for optimal scheduling of water supply systems
    Yang, Kun
    Zhai, Jingang
    [J]. SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, PROCEEDINGS, 2009, : 509 - 512
  • [8] Comparative Analysis of Genetic Algorithms and Particle Swarm Optimization Algorithms for Optimal Reservoir Operation
    Yun, Ruan
    [J]. ADVANCES IN CIVIL ENGINEERING, PTS 1-4, 2011, 90-93 : 2727 - 2733
  • [9] Empirical Study of Segment Particle Swarm Optimization and Particle Swarm Optimization Algorithms
    Azrag, Mohammed Adam Kunna
    Kadir, Tuty Asmawaty Abdul
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 480 - 485
  • [10] Empirical study of segment particle swarm optimization and particle swarm optimization algorithms
    Azrag, Mohammed Adam Kunna
    Kadir, Tuty Asmawaty Abdul
    [J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 480 - 485