Optimal Parameter Regions for Particle Swarm Optimization Algorithms

被引:0
|
作者
Harrison, Kyle Robert [1 ]
Ombuki-Berman, Beatrice M. [2 ]
Engelbrecht, Andries P. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, Pretoria, South Africa
[2] Brock Univ, Dept Comp Sci, St Catharines, ON, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
CONVERGENCE ANALYSIS; STABILITY ANALYSIS; SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle swarm optimization (PSO) is a stochastic search algorithm based on the social dynamics of a flock of birds. The performance of the PSO algorithm is known to be sensitive to the values assigned to its control parameters. While many studies have provided reasonable ranges in which to initialize the parameters based on their long-term behaviours, such previous studies fail to quantify the empirical performance of parameter configurations across a wide variety of benchmark problems. This paper specifically address this issue by examining the performance of a set of 1012 parameter configurations of the PSO algorithm over a set of 22 benchmark problems using both the global-best and local-best topologies. Results indicate that, in general, parameter configurations which are within close proximity to the boundaries of the best-known theoretically-defined convergent region lead to better performance than configurations which are further away. Moreover, results indicate that neighbourhood topology plays a far more significant role than modality and separability when determining the regions in parameter space which perform well.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [41] Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms
    Morteza Alinia Ahandani
    Jafar Abbasfam
    Hamed Kharrati
    Applied Intelligence, 2022, 52 : 13082 - 13096
  • [42] Parameter identification of T-S fuzzy models based on particle swarm optimization algorithms
    Ding, Yuan
    Gao, Xiaozhi
    Huang, Xianlin
    Yin, Hang
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 442 - +
  • [43] An improved reactive force field parameter optimization framework based on simulated annealing and particle swarm optimization algorithms
    Sun, Qinhao
    Zhong, Jinhuan
    Shi, Pengfei
    Xu, Huajie
    Wang, Yang
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 251
  • [44] Swarm Intelligence in Action: Particle Swarm Optimization and Rendezvous Algorithms for Swarm Robotics
    Ganduri, Krishna Vamshi
    Pathri, Bhargav Prajwal
    JOURNAL OF FIELD ROBOTICS, 2024,
  • [45] Particle Swarm Optimization Based Steel Rolling Parameter Optimization
    Shi, Jiachuan
    Yin, Dong
    Yang, Guiling
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 632 - 636
  • [46] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [47] Optimal choice of parameters for particle swarm optimization
    张丽平
    俞欢军
    胡上序
    Journal of Zhejiang University Science A(Science in Engineering), 2005, (06) : 528 - 534
  • [48] Optimal Radome Design with Particle Swarm Optimization
    Chiba, Hidetoshi
    Inasawa, Yoshio
    Miyashita, Hiroaki
    Konishi, Yoshihiko
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 2886 - 2889
  • [49] Optimal Network Localization by Particle Swarm Optimization
    Rusu, Catalin V.
    Ahn, Hyo-Sung
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2011, : 620 - 625
  • [50] Optimal choice of parameters for particle swarm optimization
    Zhang L.-P.
    Yu H.-J.
    Hu S.-X.
    Journal of Zhejiang University-SCIENCE A, 2005, 6 (6): : 528 - 534