Optimal Parameter Regions for Particle Swarm Optimization Algorithms

被引:0
|
作者
Harrison, Kyle Robert [1 ]
Ombuki-Berman, Beatrice M. [2 ]
Engelbrecht, Andries P. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, Pretoria, South Africa
[2] Brock Univ, Dept Comp Sci, St Catharines, ON, Canada
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
CONVERGENCE ANALYSIS; STABILITY ANALYSIS; SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle swarm optimization (PSO) is a stochastic search algorithm based on the social dynamics of a flock of birds. The performance of the PSO algorithm is known to be sensitive to the values assigned to its control parameters. While many studies have provided reasonable ranges in which to initialize the parameters based on their long-term behaviours, such previous studies fail to quantify the empirical performance of parameter configurations across a wide variety of benchmark problems. This paper specifically address this issue by examining the performance of a set of 1012 parameter configurations of the PSO algorithm over a set of 22 benchmark problems using both the global-best and local-best topologies. Results indicate that, in general, parameter configurations which are within close proximity to the boundaries of the best-known theoretically-defined convergent region lead to better performance than configurations which are further away. Moreover, results indicate that neighbourhood topology plays a far more significant role than modality and separability when determining the regions in parameter space which perform well.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [21] An Adaptive Particle Swarm Optimization for Engine Parameter Optimization
    Wu, Dongmei
    Gao, Hao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 121 - 128
  • [22] Improved particle swarm optimization algorithms for electromagnetic optimization
    Mussetta, Marco
    Selleri, Stefano
    Pirinoli, Paola
    Zich, Riccardo E.
    Matekovits, Ladislau
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2008, 19 (01) : 75 - 84
  • [23] Study on parameter effect of particle swarm optimization
    Liu Chao-wei
    Huang De-xian
    PROCEEDINGS OF 2004 CHINESE CONTROL AND DECISION CONFERENCE, 2004, : 215 - +
  • [24] Research on particle swarm optimization of variable parameter
    Li, Zhe
    Tan, Ruilian
    Ren, Baoxiang
    ADVANCES ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING, 2017, 1 : 25 - 33
  • [25] Parameter settings in particle swarm optimisation algorithms: a survey
    Li, Jing
    Cheng, Shi
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2022, 16 (02) : 164 - 182
  • [26] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [27] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [28] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [29] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [30] Swarm Reinforcement Learning Algorithms Based on Particle Swarm Optimization
    Iima, Hitoshi
    Kuroe, Yasuaki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1109 - 1114