ST-HMP: Unsupervised Spatio-Temporal Feature Learning for Tactile Data

被引:0
|
作者
Madry, Marianna [1 ,2 ]
Bo, Liefeng [3 ,4 ]
Kragic, Danica [1 ,2 ]
Fox, Dieter [5 ]
机构
[1] KTH Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden
[2] KTH Royal Inst Technol, Comp Vis & Act Percept Lab, Stockholm, Sweden
[3] Amazon Inc, Seattle, WA USA
[4] Intel Sci & Technol Ctr Pervas Comp, Seattle, WA USA
[5] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Tactile sensing plays an important role in robot grasping and object recognition. In this work, we propose a new descriptor named Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) that captures properties of a time series of tactile sensor measurements. It is based on the concept of unsupervised hierarchical feature learning realized using sparse coding. The ST-HMP extracts rich spatio-temporal structures from raw tactile data without the need to predefine discriminative data characteristics. We apply it to two different applications: (1) grasp stability assessment and (2) object instance recognition, presenting its universal properties. An extensive evaluation on several synthetic and real datasets collected using the Schunk Dexterous, Schunk Parallel and iCub hands shows that our approach outperforms previously published results by a large margin.
引用
收藏
页码:2262 / 2269
页数:8
相关论文
共 50 条
  • [1] INCORPORATING SCALABILITY IN UNSUPERVISED SPATIO-TEMPORAL FEATURE LEARNING
    Paul, Sujoy
    Roy, Sourya
    Roy-Chowdhury, Amit K.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1503 - 1507
  • [2] Unsupervised Video Hashing by Exploiting Spatio-Temporal Feature
    Ma, Chao
    Gu, Yun
    Liu, Wei
    Yang, Jie
    He, Xiangjian
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 511 - 518
  • [3] Mining Customers' Spatio-temporal Behavior Data using Topographic Unsupervised Learning
    Cabanes, Guenael
    Bennani, Younes
    Dufau-Joel, Frederic
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 372 - +
  • [4] Spatio-Temporal Autoencoder for Feature Learning in Patient Data with Missing Observations
    Jia, Yao
    Zhou, Chongyu
    Motani, Mehul
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 886 - 890
  • [5] Unsupervised learning of spatio-temporal primitives of emotional gait
    Omlor, Lars
    Giese, Martin A.
    PERCEPTION AND INTERACTIVE TECHNOLOGIES, PROCEEDINGS, 2006, 4021 : 188 - 192
  • [6] Bidirectionally Learning Dense Spatio-temporal Feature Propagation Network for Unsupervised Video Object Segmentation
    Fan, Jiaqing
    Su, Tiankang
    Zhang, Kaihua
    Liu, Qingshan
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3646 - 3655
  • [7] A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data
    Karadayi, Yildiz
    Aydin, Mehmet N.
    Ogrenci, A. Selcuk
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [8] ECSNet: Spatio-Temporal Feature Learning for Event Camera
    Chen, Zhiwen
    Wu, Jinjian
    Hou, Junhui
    Li, Leida
    Dong, Weisheng
    Shi, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 701 - 712
  • [9] Feature Engineering Techniques and Spatio-Temporal Data Processing
    Forke, Chris-Marian
    Tropmann-Frick, Marina
    Tropmann-Frick, Marina (marina.tropmann-frick@haw-hamburg.de), 1600, Springer Medizin (21): : 237 - 244
  • [10] An unsupervised video anomaly detection method via Optical Flow decomposition and Spatio-Temporal feature learning
    Fan, Jin
    Ji, Yuxiang
    Wu, Huifeng
    Ge, Yan
    Sun, Danfeng
    Wu, Jia
    PATTERN RECOGNITION LETTERS, 2024, 185 : 239 - 246