Feature Engineering Techniques and Spatio-Temporal Data Processing

被引:0
|
作者
Forke, Chris-Marian [1 ]
Tropmann-Frick, Marina [1 ]
机构
[1] Forke, Chris-Marian
[2] Tropmann-Frick, Marina
来源
关键词
Data handling - Learning algorithms;
D O I
10.1007/s13222-021-00391-x
中图分类号
学科分类号
摘要
More and more applications nowadays use spatio-temporal data for different purposes. In order to be processed and used efficiently, this unique type of data requires special handling. This paper summarizes methods and approaches for feature selection of spatio-temporal data and machine learning algorithms for spatio-temporal data engineering. Furthermore, it highlights relevant work in specific domains. The range of possible approaches for data processing is quite wide. However, in order to use these approaches with the spatio-temporal data in a meaningful and practical way, individual data processing steps need to be adapted. One of the most important steps is feature engineering.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 50 条
  • [1] Spatio-temporal sensor data processing techniques
    Kim J.-J.
    Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13): : 1259 - 1276
  • [2] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [3] Spatio-temporal feature classifier
    Wang, Yun
    Liu, Suxing
    Open Automation and Control Systems Journal, 2015, 7 (01): : 1 - 7
  • [4] Efficient Processing of Spatio-Temporal Joins on IoT Data
    Lee, Ki Yong
    Seo, Minji
    Lee, Ryong
    Park, Minwoo
    Lee, Sang-Hwan
    IEEE ACCESS, 2020, 8 : 108371 - 108386
  • [5] Spatio-Temporal Gridded Data Processing on the Semantic Web
    Andrejev, Andrej
    Misev, Dimitar
    Baumann, Peter
    Risch, Tore
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND DATA INTENSIVE SYSTEMS, 2015, : 38 - 45
  • [6] Feature Selection on Spatio-Temporal Data for Solar Irradiance Forecasting
    Carranza-Garcia, Manuel
    Lara-Benitez, Pedro
    Maria Luna-Romera, Jose
    Riquelme, Jose C.
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 654 - 664
  • [7] IMPROVING SPATIO-TEMPORAL FEATURE EXTRACTION TECHNIQUES AND THEIR APPLICATIONS IN ACTION CLASSIFICATION
    Mesmakhosroshahi, Maral
    Kim, Joohee
    2012 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2012,
  • [8] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [9] Incorporating temporal information during feature engineering bolsters emulation of spatio-temporal emergence
    Cain, Jason Y.
    Evarts, Jacob, I
    Yu, Jessica S.
    Bagheri, Neda
    BIOINFORMATICS, 2024, 40 (03)
  • [10] Distributed processing of big mobility data as spatio-temporal data streams
    Zdravko Galić
    Emir Mešković
    Dario Osmanović
    GeoInformatica, 2017, 21 : 263 - 291