Feature Engineering Techniques and Spatio-Temporal Data Processing

被引:0
|
作者
Forke, Chris-Marian [1 ]
Tropmann-Frick, Marina [1 ]
机构
[1] Forke, Chris-Marian
[2] Tropmann-Frick, Marina
来源
关键词
Data handling - Learning algorithms;
D O I
10.1007/s13222-021-00391-x
中图分类号
学科分类号
摘要
More and more applications nowadays use spatio-temporal data for different purposes. In order to be processed and used efficiently, this unique type of data requires special handling. This paper summarizes methods and approaches for feature selection of spatio-temporal data and machine learning algorithms for spatio-temporal data engineering. Furthermore, it highlights relevant work in specific domains. The range of possible approaches for data processing is quite wide. However, in order to use these approaches with the spatio-temporal data in a meaningful and practical way, individual data processing steps need to be adapted. One of the most important steps is feature engineering.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 50 条
  • [41] Visualization strategies and techniques for high-dimensional spatio-temporal data
    Schmidt, B
    Streit, U
    Uhlenkuken, C
    GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 248 - 253
  • [42] Spatio-temporal processing of coherent acoustic communications data in shallow water
    Beaujean, PPJ
    LeBlanc, LR
    OCEANS 2000 MTS/IEEE - WHERE MARINE SCIENCE AND TECHNOLOGY MEET, VOLS 1-3, CONFERENCE PROCEEDINGS, 2000, : 1625 - 1631
  • [43] Spatio-temporal processing of coherent acoustic communication data in shallow water
    LeBlanc, LR
    Beaujean, PPJ
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2000, 25 (01) : 40 - 51
  • [44] Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
    Kugele, Alexander
    Pfeil, Thomas
    Pfeiffer, Michael
    Chicca, Elisabetta
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [45] ST-HMP: Unsupervised Spatio-Temporal Feature Learning for Tactile Data
    Madry, Marianna
    Bo, Liefeng
    Kragic, Danica
    Fox, Dieter
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 2262 - 2269
  • [46] Object relational spatio-temporal data model based on the change-of-feature
    Wu, X. C.
    Cui, W. H.
    Yang, X. D.
    Huang, Y. Q.
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 1, 2008, : 1244 - 1247
  • [47] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [48] Learning of Spatio-temporal Dynamics in Thermal Engineering
    De Lozzo, Matthias
    Klotz, Patricia
    Laurent, Beatrice
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, 2012, 311 : 213 - 222
  • [49] WORKING WITH SPATIO-TEMPORAL DATA TYPE
    Raza, Ale
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION II, 2012, 39-B2 : 5 - 10
  • [50] Spatio-temporal rule mining:: Issues and techniques
    Gidófalvi, G
    Pedersen, TB
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2005, 3589 : 275 - 284