Anomaly Detection Using Autoencoders for Movement Prediction

被引:0
|
作者
Barbosa, L. J. L. [1 ]
Delis, A. L. [2 ]
Cotta, P. V. P. [1 ]
Silva, V. O. [1 ]
Araujo, M. D. C. [1 ]
Rocha, A. [1 ]
机构
[1] Univ Brasilia, Engn Biomed, Brasilia, DF, Brazil
[2] Med Biophys Ctr, Santiago De Cuba, Cuba
关键词
EMG; Variational autoencoder; Deep learning; Information;
D O I
10.1007/978-3-030-70601-2_239
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The smaller the time window, the faster the response of a prosthesis to the user's movement. However, very small windows have very little information, making it difficult to classify the surface electromyography signal (sEMG). This article presents the use of autoencoders for the detection of motion in real-time processing. For this purpose, a time window of 0.01 s window (i.e., ten samples per window). The difference between the number of peaks and the distance between them in the resulting latent space makes it possible to classify the moment when the patient starts to move. Through an autoencoder as an anomaly detector, it was possible to classify the beginning of the user's movement, thus managing to improve the classification in real-time.
引用
下载
收藏
页码:1635 / 1640
页数:6
相关论文
共 50 条
  • [11] Using Autoencoders for Anomaly Detection in Hard Disk Drives
    Pereira, Francisco Lucas F.
    Chaves, Iago Castro
    Gomes, Joao Paulo P.
    Machado, Javam C.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [12] Interpretability-Aware Industrial Anomaly Detection Using Autoencoders
    Jiang, Rui
    Xue, Yijia
    Zou, Dongmian
    IEEE ACCESS, 2023, 11 : 60490 - 60500
  • [13] Anomaly detection in gravitational waves data using convolutional autoencoders
    Morawski F.
    Bejger M.
    Cuoco E.
    Petre L.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [14] Anomaly Detection in 5G using Variational Autoencoders
    Islam, Amanul
    Chang, Sang-Yoon
    Kim, Jinoh
    Kim, Jonghyun
    2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,
  • [15] Anomaly Detection in Industrial Software Systems Using Variational Autoencoders
    Kumarage, Tharindu
    De Silva, Nadun
    Ranawaka, Malsha
    Kuruppu, Chamal
    Ranathunga, Surangika
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 440 - 447
  • [16] Vibration Anomaly Detection using Deep Autoencoders for Smart Factory
    Waters, Mark
    Waszczuk, Pawel
    Ayre, Rodney
    Dreze, Alain
    McGlinchey, Don
    Alkali, Babakalli
    Morison, Gordon
    2022 IEEE SENSORS, 2022,
  • [17] Anomaly Detection On Propulsive Systems By Global Approach Using Autoencoders
    Ferard, Bruno
    Le Gonidec, Serge
    Galeotta, Marco
    Oriol, Stephane
    Dreyer, Stephanie
    IFAC PAPERSONLINE, 2021, 54 (04): : 31 - 37
  • [18] ROBUREC: Building a Robust Recommender using Autoencoders with Anomaly Detection
    Aly, Ahmed
    Nawara, Dina
    Kashef, Rasha
    PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 384 - 391
  • [19] Using Deep Autoencoders for In-vehicle Audio Anomaly Detection
    Pereira, Pedro Jose
    Coelho, Gabriel
    Ribeiro, Alexandrine
    Matos, Luis Miguel
    Nunes, Eduardo C.
    Ferreira, Andre
    Pilastri, Andre
    Cortez, Paulo
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 298 - 307
  • [20] Acoustic Anomaly Detection Using Convolutional Autoencoders in Industrial Processes
    Duman, Taha Berkay
    Bayram, Baris
    Ince, Gokhan
    14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019), 2020, 950 : 432 - 442