Anomaly Detection Using Autoencoders for Movement Prediction

被引:0
|
作者
Barbosa, L. J. L. [1 ]
Delis, A. L. [2 ]
Cotta, P. V. P. [1 ]
Silva, V. O. [1 ]
Araujo, M. D. C. [1 ]
Rocha, A. [1 ]
机构
[1] Univ Brasilia, Engn Biomed, Brasilia, DF, Brazil
[2] Med Biophys Ctr, Santiago De Cuba, Cuba
关键词
EMG; Variational autoencoder; Deep learning; Information;
D O I
10.1007/978-3-030-70601-2_239
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The smaller the time window, the faster the response of a prosthesis to the user's movement. However, very small windows have very little information, making it difficult to classify the surface electromyography signal (sEMG). This article presents the use of autoencoders for the detection of motion in real-time processing. For this purpose, a time window of 0.01 s window (i.e., ten samples per window). The difference between the number of peaks and the distance between them in the resulting latent space makes it possible to classify the moment when the patient starts to move. Through an autoencoder as an anomaly detector, it was possible to classify the beginning of the user's movement, thus managing to improve the classification in real-time.
引用
下载
收藏
页码:1635 / 1640
页数:6
相关论文
共 50 条
  • [31] Anomaly based Resilient Network Intrusion Detection using Inferential Autoencoders
    Hannan, Abdul
    Gruhl, Christian
    Sick, Bernhard
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 1 - 7
  • [32] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Luo, Xukang
    Jiang, Ying
    Wang, Enqiang
    Men, Xinlei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [33] Dynamic video anomaly detection and localization using sparse denoising autoencoders
    Narasimhan, Medhini G.
    Kamath, Sowmya S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (11) : 13173 - 13195
  • [34] Anomaly-based Insider Threat Detection using Deep Autoencoders
    Liu, Liu
    De Vel, Olivier
    Chen, Chao
    Zhang, Jun
    Xiang, Yang
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 39 - 48
  • [35] Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems
    Sivasubramanian, Arrun
    Devisetty, Mithil
    Bhavukam, Premjith
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (9) : 13061 - 13073
  • [36] Latent-Insensitive Autoencoders for Anomaly Detection
    Battikh, Muhammad S.
    Lenskiy, Artem A.
    MATHEMATICS, 2022, 10 (01)
  • [37] Convolutional AutoEncoders for Anomaly Detection in Semiconductor Manufacturing
    Gorman, Mark
    Ding, Xuemei
    Maguire, Liam
    Coyle, Damien
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [38] Variational Autoencoders for Anomaly Detection in Respiratory Sounds
    Cozzatti, Michele
    Simonetta, Federico
    Ntalampiras, Stavros
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 333 - 345
  • [39] Combining GANs and AutoEncoders for efficient anomaly detection
    Carrara, Fabio
    Amato, Giuseppe
    Brombin, Luca
    Falchi, Fabrizio
    Gennaro, Claudio
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 3939 - 3946
  • [40] Verifying Autoencoders for Anomaly Detection in Predictive Maintenance
    Guidotti, Dario
    Pandolfo, Laura
    Pulina, Luca
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 188 - 199