Anomaly Detection Using Autoencoders for Movement Prediction

被引:0
|
作者
Barbosa, L. J. L. [1 ]
Delis, A. L. [2 ]
Cotta, P. V. P. [1 ]
Silva, V. O. [1 ]
Araujo, M. D. C. [1 ]
Rocha, A. [1 ]
机构
[1] Univ Brasilia, Engn Biomed, Brasilia, DF, Brazil
[2] Med Biophys Ctr, Santiago De Cuba, Cuba
关键词
EMG; Variational autoencoder; Deep learning; Information;
D O I
10.1007/978-3-030-70601-2_239
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The smaller the time window, the faster the response of a prosthesis to the user's movement. However, very small windows have very little information, making it difficult to classify the surface electromyography signal (sEMG). This article presents the use of autoencoders for the detection of motion in real-time processing. For this purpose, a time window of 0.01 s window (i.e., ten samples per window). The difference between the number of peaks and the distance between them in the resulting latent space makes it possible to classify the moment when the patient starts to move. Through an autoencoder as an anomaly detector, it was possible to classify the beginning of the user's movement, thus managing to improve the classification in real-time.
引用
下载
收藏
页码:1635 / 1640
页数:6
相关论文
共 50 条
  • [21] Anomaly Detection Using Autoencoders in High Performance Computing Systems
    Borghesi, Andrea
    Bartolini, Andrea
    Lombardi, Michele
    Milano, Michela
    Benini, Luca
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9428 - 9433
  • [22] Anomaly Detection in WBANs Using CNN-Autoencoders and LSTMs
    Dubey, Kartikeya
    Hota, Chittaranjan
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 3, AINA 2024, 2024, 201 : 187 - 197
  • [23] Anomaly detection in images with shared autoencoders
    Jia, Haoyang
    Liu, Wenfen
    FRONTIERS IN NEUROROBOTICS, 2023, 16
  • [24] Anomaly Detection with Robust Deep Autoencoders
    Zhou, Chong
    Paffenroth, Randy C.
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 665 - 674
  • [25] FOURIER TRANSFORMATION AUTOENCODERS FOR ANOMALY DETECTION
    Lappas, Demetris
    Argyriou, Vasileios
    Makris, Dimitrios
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1475 - 1479
  • [26] Dynamic video anomaly detection and localization using sparse denoising autoencoders
    Medhini G. Narasimhan
    Sowmya Kamath S.
    Multimedia Tools and Applications, 2018, 77 : 13173 - 13195
  • [27] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Xukang Luo
    Ying Jiang
    Enqiang Wang
    Xinlei Men
    EURASIP Journal on Advances in Signal Processing, 2022
  • [28] Unsupervised anomaly detection in railway catenary condition monitoring using autoencoders
    Wang, Hongrui
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 2636 - 2641
  • [29] An Efficient Anomaly Detection System for Crowded Scenes Using Variational Autoencoders
    Xu, Ming
    Yu, Xiaosheng
    Chen, Dongyue
    Wu, Chengdong
    Jiang, Yang
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [30] Improved Anomaly Detection and Localization Using Whitening-Enhanced Autoencoders
    Wang, Chenguang
    Tindemans, Simon H.
    Palensky, Peter
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 659 - 668