Anomaly detection in gravitational waves data using convolutional autoencoders

被引:13
|
作者
Morawski, Filip [1 ]
Bejger, Michal [1 ]
Cuoco, Elena [2 ,3 ,4 ]
Petre, Luigia [5 ]
机构
[1] Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, Warsaw,00-716, Poland
[2] European Gravitational Observatory (EGO), Cascina, Pisa,I-56021, Italy
[3] Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa,I-56126, Italy
[4] INFN, Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa,I-56127, Italy
[5] Department of Computer Science, Faculty of Science and Engineering, Åbo Akademi University, Tuomiokirkontori 3, Turku,20500, Finland
来源
关键词
49;
D O I
10.1088/2632-2153/abf3d0
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    [J]. IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [2] An Anomaly Detection and Explainability Framework using Convolutional Autoencoders for Data Storage Systems
    Assaf, Roy
    Giurgiu, Ioana
    Pfefferle, Jonas
    Monney, Serge
    Pozidis, Haris
    Schumann, Anika
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5228 - 5230
  • [3] Acoustic Anomaly Detection Using Convolutional Autoencoders in Industrial Processes
    Duman, Taha Berkay
    Bayram, Baris
    Ince, Gokhan
    [J]. 14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019), 2020, 950 : 432 - 442
  • [4] Convolutional AutoEncoders for Anomaly Detection in Semiconductor Manufacturing
    Gorman, Mark
    Ding, Xuemei
    Maguire, Liam
    Coyle, Damien
    [J]. 2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [5] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Xukang Luo
    Ying Jiang
    Enqiang Wang
    Xinlei Men
    [J]. EURASIP Journal on Advances in Signal Processing, 2022
  • [6] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Luo, Xukang
    Jiang, Ying
    Wang, Enqiang
    Men, Xinlei
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [7] Anomaly Detection with Convolutional Autoencoders for Fingerprint Presentation Attack Detection
    Kolberg, Jascha
    Grimmer, Marcel
    Gomez-Barrero, Marta
    Busch, Christoph
    [J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (02): : 190 - 202
  • [8] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Yu, Qien
    Kavitha, Muthu Subash
    Kurita, Takio
    [J]. APPLIED INTELLIGENCE, 2021, 51 (06) : 3241 - 3254
  • [9] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Qien Yu
    Muthu Subash Kavitha
    Takio Kurita
    [J]. Applied Intelligence, 2021, 51 : 3241 - 3254
  • [10] TCAE: Temporal Convolutional Autoencoders for Time Series Anomaly Detection
    Park, Jinuk
    Park, Yongju
    Kim, Chang-Il
    [J]. 2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 421 - 426