TCAE: Temporal Convolutional Autoencoders for Time Series Anomaly Detection

被引:1
|
作者
Park, Jinuk [1 ]
Park, Yongju [1 ]
Kim, Chang-Il [1 ]
机构
[1] Korea Elect Technol Inst KETI, Seoul, South Korea
关键词
time series; anomaly detection; neural networks; non-autoregressive decoding; residual connection;
D O I
10.1109/ICUFN55119.2022.9829692
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prevalent recurrent autoencoders for time series anomaly detection often fail to model time series since they have information bottlenecks from the fixed-length latent vectors. In this paper, we propose a conceptually simple yet experimentally effective time series anomaly detection framework called temporal convolutional autoencoder (TCAE). Our model imposes dilated causal convolutional neural networks to capture temporal features while avoiding inefficient recurrent models. Also, we utilize bypassing residual connections in encoded vectors to enhance the temporal features and train the entire model efficiently. Extensive evaluation on several real-world datasets demonstrates that the proposed method outperforms strong anomaly detection baselines.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [1] Temporal convolutional autoencoder for unsupervised anomaly detection in time series
    Thill, Markus
    Konen, Wolfgang
    Wang, Hao
    Back, Thomas
    [J]. APPLIED SOFT COMPUTING, 2021, 112
  • [2] Denoising temporal convolutional recurrent autoencoders for time series classification
    Zheng, Zhong
    Zhang, Zijun
    Wang, Long
    Luo, Xiong
    [J]. INFORMATION SCIENCES, 2022, 588 : 159 - 173
  • [3] Convolutional AutoEncoders for Anomaly Detection in Semiconductor Manufacturing
    Gorman, Mark
    Ding, Xuemei
    Maguire, Liam
    Coyle, Damien
    [J]. 2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [4] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    [J]. IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [5] Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series
    Miele, Eric Stefan
    Bonacina, Fabrizio
    Corsini, Alessandro
    [J]. ENERGY AND AI, 2022, 8
  • [6] Anomaly detection for time series using temporal convolutional networks and Gaussian mixture model
    Liu, Jianwei
    Zhu, Hongwei
    Liu, Yongxia
    Wu, Haobo
    Lan, Yunsheng
    Zhang, Xinyu
    [J]. 2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [7] Towards Efficient Deep Autoencoders for Multivariate Time Series Anomaly Detection
    Pietron, Marcin
    Zurek, Dominik
    Faber, Kamil
    Corizzo, Roberto
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 461 - 469
  • [8] Anomaly Detection with Convolutional Autoencoders for Fingerprint Presentation Attack Detection
    Kolberg, Jascha
    Grimmer, Marcel
    Gomez-Barrero, Marta
    Busch, Christoph
    [J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (02): : 190 - 202
  • [9] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Yu, Qien
    Kavitha, Muthu Subash
    Kurita, Takio
    [J]. APPLIED INTELLIGENCE, 2021, 51 (06) : 3241 - 3254
  • [10] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Qien Yu
    Muthu Subash Kavitha
    Takio Kurita
    [J]. Applied Intelligence, 2021, 51 : 3241 - 3254