Anomaly Detection Using Autoencoders for Movement Prediction

被引:0
|
作者
Barbosa, L. J. L. [1 ]
Delis, A. L. [2 ]
Cotta, P. V. P. [1 ]
Silva, V. O. [1 ]
Araujo, M. D. C. [1 ]
Rocha, A. [1 ]
机构
[1] Univ Brasilia, Engn Biomed, Brasilia, DF, Brazil
[2] Med Biophys Ctr, Santiago De Cuba, Cuba
关键词
EMG; Variational autoencoder; Deep learning; Information;
D O I
10.1007/978-3-030-70601-2_239
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The smaller the time window, the faster the response of a prosthesis to the user's movement. However, very small windows have very little information, making it difficult to classify the surface electromyography signal (sEMG). This article presents the use of autoencoders for the detection of motion in real-time processing. For this purpose, a time window of 0.01 s window (i.e., ten samples per window). The difference between the number of peaks and the distance between them in the resulting latent space makes it possible to classify the moment when the patient starts to move. Through an autoencoder as an anomaly detector, it was possible to classify the beginning of the user's movement, thus managing to improve the classification in real-time.
引用
下载
收藏
页码:1635 / 1640
页数:6
相关论文
共 50 条
  • [1] Anomaly Detection of a Reciprocating Compressor using Autoencoders
    Charoenchitt, Chittkasem
    Tangamchit, Poj
    2021 SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP), 2021, : 44 - 47
  • [2] Anomaly Detection in Surveillance Scenes Using Autoencoders
    Joshi K.V.
    Patel N.M.
    SN Computer Science, 4 (6)
  • [3] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [4] Anomaly Detection for Agricultural Vehicles Using Autoencoders
    Mujkic, Esma
    Philipsen, Mark P.
    Moeslund, Thomas B.
    Christiansen, Martin P.
    Ravn, Ole
    SENSORS, 2022, 22 (10)
  • [5] UAV Fault and Anomaly Detection Using Autoencoders
    Dhakal, Raju
    Bosma, Carly
    Chaudhary, Prachi
    Kandel, Laxima Niure
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [6] Intelligent Human Anomaly Detection using LSTM Autoencoders
    Roseline, S. Abijah
    Karthik, Saraf
    Sruti, Immadi Naga Venkata Divya
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [7] Anomaly Detection in Beehives using Deep Recurrent Autoencoders
    Davidson, Padraig
    Steininger, Michael
    Lautenschlager, Florian
    Kobs, Konstantin
    Krause, Anna
    Hotho, Andreas
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SENSOR NETWORKS (SENSORNETS), 2020, : 142 - 149
  • [8] Robust Anomaly Detection in Images Using Adversarial Autoencoders
    Beggel, Laura
    Pfeiffer, Michael
    Bischl, Bernd
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 206 - 222
  • [9] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492
  • [10] Using Autoencoders for Anomaly Detection and Transfer Learning in IoT
    Tien, Chin-Wei
    Huang, Tse-Yung
    Chen, Ping-Chun
    Wang, Jenq-Haur
    COMPUTERS, 2021, 10 (07)