UAV Fault and Anomaly Detection Using Autoencoders

被引:1
|
作者
Dhakal, Raju [1 ]
Bosma, Carly [1 ]
Chaudhary, Prachi [1 ]
Kandel, Laxima Niure [1 ]
机构
[1] Embry Riddle Aeronaut Univ, Dept Elect Engn & Comp Sci, Daytona Beach, FL 32114 USA
关键词
Autoencoders; Variational Autoencoders; Fault detection; Anomaly detection; SENSOR;
D O I
10.1109/DASC58513.2023.10311126
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The popularity of Uncrewed Aerial Vehicles (UAVs) is on the rise, but these complex systems are susceptible to faults and anomalies impacting their safety and performance. To deal with emergency situations, it is necessary to monitor the status of these aircraft and report any anomalies or faults. Therefore, it is of great significance to study the anomaly detection method for UAV systems. In this study, unsupervised neural network models called Autoencoders (AE) and Variational Autoencoders (VAE) are utilized to detect UAV faults and anomalies. The key idea is to train autoencoders to learn the normal data and, after training, use them to identify the abnormal data by observing the magnitude of the reconstruction error. This serves as both an indicator of anomalies during inference and a cost function in training. Our results from publicly available real UAV sensor data called ALFA (Air Lab Failure and Anomaly) verify that the VAE-based method can effectively detect faults and anomalies with an average accuracy of 95.6%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ALFA: A dataset for UAV fault and anomaly detection
    Keipour, Azarakhsh
    Mousaei, Mohammadreza
    Scherer, Sebastian
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (2-3): : 515 - 520
  • [2] Anomaly Detection Using Autoencoders for Movement Prediction
    Barbosa, L. J. L.
    Delis, A. L.
    Cotta, P. V. P.
    Silva, V. O.
    Araujo, M. D. C.
    Rocha, A.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1635 - 1640
  • [3] Anomaly Detection of a Reciprocating Compressor using Autoencoders
    Charoenchitt, Chittkasem
    Tangamchit, Poj
    2021 SECOND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION, CONTROL, ARTIFICIAL INTELLIGENCE, AND ROBOTICS (ICA-SYMP), 2021, : 44 - 47
  • [4] Anomaly Detection in Surveillance Scenes Using Autoencoders
    Joshi K.V.
    Patel N.M.
    SN Computer Science, 4 (6)
  • [5] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [6] Anomaly Detection for Agricultural Vehicles Using Autoencoders
    Mujkic, Esma
    Philipsen, Mark P.
    Moeslund, Thomas B.
    Christiansen, Martin P.
    Ravn, Ole
    SENSORS, 2022, 22 (10)
  • [7] Intelligent Human Anomaly Detection using LSTM Autoencoders
    Roseline, S. Abijah
    Karthik, Saraf
    Sruti, Immadi Naga Venkata Divya
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [8] Anomaly Detection in Beehives using Deep Recurrent Autoencoders
    Davidson, Padraig
    Steininger, Michael
    Lautenschlager, Florian
    Kobs, Konstantin
    Krause, Anna
    Hotho, Andreas
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SENSOR NETWORKS (SENSORNETS), 2020, : 142 - 149
  • [9] Robust Anomaly Detection in Images Using Adversarial Autoencoders
    Beggel, Laura
    Pfeiffer, Michael
    Bischl, Bernd
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 206 - 222
  • [10] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492