UAV Fault and Anomaly Detection Using Autoencoders

被引:1
|
作者
Dhakal, Raju [1 ]
Bosma, Carly [1 ]
Chaudhary, Prachi [1 ]
Kandel, Laxima Niure [1 ]
机构
[1] Embry Riddle Aeronaut Univ, Dept Elect Engn & Comp Sci, Daytona Beach, FL 32114 USA
关键词
Autoencoders; Variational Autoencoders; Fault detection; Anomaly detection; SENSOR;
D O I
10.1109/DASC58513.2023.10311126
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The popularity of Uncrewed Aerial Vehicles (UAVs) is on the rise, but these complex systems are susceptible to faults and anomalies impacting their safety and performance. To deal with emergency situations, it is necessary to monitor the status of these aircraft and report any anomalies or faults. Therefore, it is of great significance to study the anomaly detection method for UAV systems. In this study, unsupervised neural network models called Autoencoders (AE) and Variational Autoencoders (VAE) are utilized to detect UAV faults and anomalies. The key idea is to train autoencoders to learn the normal data and, after training, use them to identify the abnormal data by observing the magnitude of the reconstruction error. This serves as both an indicator of anomalies during inference and a cost function in training. Our results from publicly available real UAV sensor data called ALFA (Air Lab Failure and Anomaly) verify that the VAE-based method can effectively detect faults and anomalies with an average accuracy of 95.6%.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Using Autoencoders for Anomaly Detection and Transfer Learning in IoT
    Tien, Chin-Wei
    Huang, Tse-Yung
    Chen, Ping-Chun
    Wang, Jenq-Haur
    COMPUTERS, 2021, 10 (07)
  • [12] Using Autoencoders for Anomaly Detection in Hard Disk Drives
    Pereira, Francisco Lucas F.
    Chaves, Iago Castro
    Gomes, Joao Paulo P.
    Machado, Javam C.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [13] Interpretability-Aware Industrial Anomaly Detection Using Autoencoders
    Jiang, Rui
    Xue, Yijia
    Zou, Dongmian
    IEEE ACCESS, 2023, 11 : 60490 - 60500
  • [14] Anomaly detection in gravitational waves data using convolutional autoencoders
    Morawski F.
    Bejger M.
    Cuoco E.
    Petre L.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [15] Anomaly Detection in 5G using Variational Autoencoders
    Islam, Amanul
    Chang, Sang-Yoon
    Kim, Jinoh
    Kim, Jonghyun
    2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,
  • [16] Anomaly Detection in Industrial Software Systems Using Variational Autoencoders
    Kumarage, Tharindu
    De Silva, Nadun
    Ranawaka, Malsha
    Kuruppu, Chamal
    Ranathunga, Surangika
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 440 - 447
  • [17] Vibration Anomaly Detection using Deep Autoencoders for Smart Factory
    Waters, Mark
    Waszczuk, Pawel
    Ayre, Rodney
    Dreze, Alain
    McGlinchey, Don
    Alkali, Babakalli
    Morison, Gordon
    2022 IEEE SENSORS, 2022,
  • [18] Anomaly Detection On Propulsive Systems By Global Approach Using Autoencoders
    Ferard, Bruno
    Le Gonidec, Serge
    Galeotta, Marco
    Oriol, Stephane
    Dreyer, Stephanie
    IFAC PAPERSONLINE, 2021, 54 (04): : 31 - 37
  • [19] ROBUREC: Building a Robust Recommender using Autoencoders with Anomaly Detection
    Aly, Ahmed
    Nawara, Dina
    Kashef, Rasha
    PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 384 - 391
  • [20] Using Deep Autoencoders for In-vehicle Audio Anomaly Detection
    Pereira, Pedro Jose
    Coelho, Gabriel
    Ribeiro, Alexandrine
    Matos, Luis Miguel
    Nunes, Eduardo C.
    Ferreira, Andre
    Pilastri, Andre
    Cortez, Paulo
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 298 - 307