NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
|
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
  • [1] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [2] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [3] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    YANG YiDu
    BI Hai
    ScienceChina(Mathematics), 2014, 57 (06) : 1319 - 1329
  • [4] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    Yang YiDu
    Bi Hai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1319 - 1329
  • [5] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    YiDu Yang
    Hai Bi
    Science China Mathematics, 2014, 57 : 1319 - 1329
  • [6] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [7] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [8] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [9] A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem
    Xiong, Chunguang
    Xie, Manting
    Luo, Fusheng
    Su, Hongling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 90 - 99
  • [10] The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering
    Li, Yanjun
    Bi, Hai
    Yang, Yidu
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)