Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems

被引:9
|
作者
Yang YiDu [1 ]
Bi Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problems; conforming finite elements; local error estimates;
D O I
10.1007/s11425-013-4709-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the work of Xu and Zhou (2000), this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems, and proves a local a priori error estimate and a new local a posteriori error estimate in norm for conforming elements eigenfunction, which has not been studied in existing literatures.
引用
收藏
页码:1319 / 1329
页数:11
相关论文
共 50 条
  • [1] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    YANG YiDu
    BI Hai
    [J]. Science China Mathematics, 2014, 57 (06) : 1319 - 1329
  • [2] Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
    YiDu Yang
    Hai Bi
    [J]. Science China Mathematics, 2014, 57 : 1319 - 1329
  • [3] A POSTERIORI ERROR ESTIMATES FOR A DISCONTINUOUS GALERKIN APPROXIMATION OF STEKLOV EIGENVALUE PROBLEMS
    Zeng, Yuping
    Wang, Feng
    [J]. APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 243 - 267
  • [4] A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
    Yuping Zeng
    Feng Wang
    [J]. Applications of Mathematics, 2017, 62 : 243 - 267
  • [5] A posteriori error estimates for non-conforming approximation of eigenvalue problems
    Dari, E. A.
    Duran, R. G.
    Padra, C.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (05) : 580 - 591
  • [6] A posteriori error estimates for the finite element approximation of eigenvalue problems
    Durán, RG
    Padra, C
    Rodríguez, R
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08): : 1219 - 1229
  • [7] A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
    Dello Russo, Anahi
    Alonso, Ana E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (11) : 4100 - 4117
  • [8] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    [J]. ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [9] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [10] The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering
    Li, Yanjun
    Bi, Hai
    Yang, Yidu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)