Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems

被引:9
|
作者
Yang YiDu [1 ]
Bi Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problems; conforming finite elements; local error estimates;
D O I
10.1007/s11425-013-4709-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the work of Xu and Zhou (2000), this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems, and proves a local a priori error estimate and a new local a posteriori error estimate in norm for conforming elements eigenfunction, which has not been studied in existing literatures.
引用
收藏
页码:1319 / 1329
页数:11
相关论文
共 50 条
  • [21] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    [J]. Science China Mathematics, 2018, 61 : 973 - 992
  • [22] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    [J]. Science China Mathematics, 2018, 61 (06) : 973 - 992
  • [23] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATES FOR PARAMETRIZED ELLIPTIC EIGENVALUE PROBLEMS
    Fumagalli, Ivan
    Manzoni, Andrea
    Parolini, Nicola
    Verani, Marco
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1857 - 1885
  • [24] Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates
    Mao, Dong
    Shen, Lihua
    Zhou, Aihui
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) : 135 - 160
  • [25] Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates
    Dong Mao
    Lihua Shen
    Aihui Zhou
    [J]. Advances in Computational Mathematics, 2006, 25 : 135 - 160
  • [26] A priori and a posteriori error estimates for the quad-curl eigenvalue problem
    Wang, Lixiu
    Zhang, Qian
    Sun, Jiguang
    Zhang, Zhimin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 1027 - 1051
  • [27] A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems
    Liu, Ying
    Nie, Yufeng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 : 73 - 83
  • [28] DISCONTINUOUS FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI ERROR ESTIMATES
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 400 - 418
  • [29] A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems
    Wang, Liang
    Xiong, Chunguang
    Wu, Huibin
    Luo, Fusheng
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2623 - 2646
  • [30] Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems
    Huipo Liu
    Wei Gong
    Shuanghu Wang
    Ningning Yan
    [J]. BIT Numerical Mathematics, 2013, 53 : 665 - 687