A posteriori error estimates for the finite element approximation of eigenvalue problems

被引:88
|
作者
Durán, RG
Padra, C
Rodríguez, R
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
来源
关键词
eigenvalue problems; finite elements; a posteriori error estimates;
D O I
10.1142/S0218202503002878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
引用
收藏
页码:1219 / 1229
页数:11
相关论文
共 50 条