Asymptotically exact a posteriori error estimates for the BDM finite element approximation of mixed Laplace eigenvalue problems

被引:0
|
作者
Lederer, Philip L. L. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Enschede, Netherlands
基金
芬兰科学院;
关键词
A posteriori error analysis; Mixed Laplace eigenvalue problem; Prager-Synge; Brezzi-Douglas-Marini finite element; GUARANTEED;
D O I
10.1007/s10543-023-00976-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We derive optimal and asymptotically exact a posteriori error estimates for the approximation of the eigenfunction of the Laplace eigenvalue problem. To do so, we combine two results from the literature. First, we use the hypercircle techniques developed for mixed eigenvalue approximations with Raviart-Thomas finite elements. In addition, we use the post-processings introduced for the eigenvalue and eigenfunction based on mixed approximations with the Brezzi-Douglas-Marini finite element. To combine these approaches, we define a novel additional local post-processing for the fluxes that appropriately modifies the divergence without compromising the approximation properties. Consequently, the new flux can be used to derive optimal and asymptotically exact upper bounds for the eigenfunction, and optimal upper bounds for the corresponding eigenvalue. Numerical examples validate the theory and motivate the use of an adaptive mesh refinement.
引用
收藏
页数:21
相关论文
共 50 条