Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem

被引:2
|
作者
Bertrand, Fleurianne [1 ]
Boffi, Daniele [2 ,3 ]
Stenberg, Rolf [3 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Univ Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
[3] Aalto Univ, Dept Math & Syst Anal, POB 11100, Espoo 00076, Finland
关键词
A Posteriori Error Analysis; Mixed Laplace Eigenvalue Problem; Prager-Synge; FINITE-ELEMENT APPROXIMATION; OPTIMAL CONVERGENCE; IMPLEMENTATION; OPTIMALITY; ESTIMATOR;
D O I
10.1515/cmam-2019-0099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem. We discuss a reconstruction in the standard H-0(1)-conforming space for the primal variable of the mixed Laplace eigenvalue problem and compare it with analogous approaches present in the literature for the corresponding source problem. In the case of Raviart-Thomas finite elements of arbitrary polynomial degree, the resulting error estimator constitutes a guaranteed upper bound for the error and is shown to be local efficient. Our reconstruction is performed locally on a set of vertex patches.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条