An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem

被引:6
|
作者
Xu, Fei [1 ]
Yue, Meiling [2 ]
Huang, Qiumei [1 ]
Ma, Hongkun [3 ,4 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
[2] Beijing Technol & Business Univ, Sch Sci, Beijing 100048, Peoples R China
[3] Sun Yat Sen Univ, Business Sch, Guangzhou 510275, Guangdong, Peoples R China
[4] Zhuhai Huafa Investment Holdings Co Ltd, Zhuhai 519031, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Non-selfadjoint Steklov eigenvalue problem; Asymptotically exact a posteriori error estimator; Cascadic multigrid method; Adaptive method; Complementary method; ADAPTIVE ALGORITHM; CONVERGENCE; H(DIV);
D O I
10.1016/j.apnum.2020.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to introduce an asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem arising from inverse scattering by using the complementary technique, which provides an asymptotically exact estimate for eigenpair of non-selfadjoint Steklov eigenvalue problem. Besides, as its applications, we design a novel cascadic adaptive method for non-selfadjoint Steklov eigenvalue problem based on the asymptotically exact estimate. In our novel algorithm, we will transform the non-selfadjoint Steklov eigenvalue problem into some boundary value problems on the adaptive space sequence and some non-selfadjoint Steklov eigenvalue problem on a low dimensional finite element space. The involved boundary value problems are solved by executing some smoothing steps which is the key point of cascadic algorithm. The mesh refinement strategy and the number of smoothing steps for the cascadic adaptive method will be controlled by the proposed asymptotically exact a posteriori error estimator. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:210 / 227
页数:18
相关论文
共 50 条
  • [1] Spectral Indicator Method for a Non-selfadjoint Steklov Eigenvalue Problem
    Liu, J.
    Sun, J.
    Turner, T.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (03) : 1814 - 1831
  • [2] Spectral Indicator Method for a Non-selfadjoint Steklov Eigenvalue Problem
    J. Liu
    J. Sun
    T. Turner
    [J]. Journal of Scientific Computing, 2019, 79 : 1814 - 1831
  • [3] Integral Equation Method for a Non-Selfadjoint Steklov Eigenvalue Problem
    Ma, Yunyun
    Sun, Jiguang
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (05) : 1546 - 1560
  • [4] Steklov eigenvalue problem and its applications An accurate a posteriori error estimator for the
    Fei Xu
    Qiumei Huang
    [J]. Science China Mathematics, 2021, 64 (03) : 623 - 638
  • [5] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Xu, Fei
    Huang, Qiumei
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (03) : 623 - 638
  • [6] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Fei Xu
    Qiumei Huang
    [J]. Science China Mathematics, 2021, 64 : 623 - 638
  • [7] Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering
    Meng, Jian
    Mei Liquan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [8] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    [J]. ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [9] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [10] Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem
    Bertrand, Fleurianne
    Boffi, Daniele
    Stenberg, Rolf
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 215 - 225