Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem

被引:2
|
作者
Bertrand, Fleurianne [1 ]
Boffi, Daniele [2 ,3 ]
Stenberg, Rolf [3 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Univ Pavia, Dipartimento Matemat F Casorati, Pavia, Italy
[3] Aalto Univ, Dept Math & Syst Anal, POB 11100, Espoo 00076, Finland
关键词
A Posteriori Error Analysis; Mixed Laplace Eigenvalue Problem; Prager-Synge; FINITE-ELEMENT APPROXIMATION; OPTIMAL CONVERGENCE; IMPLEMENTATION; OPTIMALITY; ESTIMATOR;
D O I
10.1515/cmam-2019-0099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem. We discuss a reconstruction in the standard H-0(1)-conforming space for the primal variable of the mixed Laplace eigenvalue problem and compare it with analogous approaches present in the literature for the corresponding source problem. In the case of Raviart-Thomas finite elements of arbitrary polynomial degree, the resulting error estimator constitutes a guaranteed upper bound for the error and is shown to be local efficient. Our reconstruction is performed locally on a set of vertex patches.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条
  • [31] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [32] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Fei Xu
    Qiumei Huang
    [J]. Science China Mathematics, 2021, 64 : 623 - 638
  • [33] A priori and a posteriori error estimates for the quad-curl eigenvalue problem
    Wang, Lixiu
    Zhang, Qian
    Sun, Jiguang
    Zhang, Zhimin
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (03) : 1027 - 1051
  • [34] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Xu, Fei
    Huang, Qiumei
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (03) : 623 - 638
  • [35] Guaranteed and asymptotically exact a posteriori error estimator for lowest-order Raviart-Thomas mixed finite element method
    Kim, Kwang-Yeon
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 357 - 375
  • [36] A posteriori error analysis of a fully-mixed formulation for the Brinkman–Darcy problem
    M. Álvarez
    G. N. Gatica
    R. Ruiz-Baier
    [J]. Calcolo, 2017, 54 : 1491 - 1519
  • [37] A posteriori error estimator for the eigenvalue problem associated to the Schrodinger operator with magnetic field
    Noël, VB
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (02) : 325 - 348
  • [38] A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem
    Shen, Quan
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (03) : 455 - 466
  • [39] A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator
    Huang, Pengzhan
    Zhang, Qiuyu
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 295 - 304
  • [40] Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 1710 - 1732