A posteriori error estimates for the finite element approximation of eigenvalue problems

被引:88
|
作者
Durán, RG
Padra, C
Rodríguez, R
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Concepcion, Dept Ingn Matemat, GI2MA, Concepcion, Chile
来源
关键词
eigenvalue problems; finite elements; a posteriori error estimates;
D O I
10.1142/S0218202503002878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
引用
收藏
页码:1219 / 1229
页数:11
相关论文
共 50 条
  • [21] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [22] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    [J]. Science China Mathematics, 2013, 56 (05) : 888 - 901
  • [23] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Heuveline, V
    Rannacher, R
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 107 - 138
  • [24] A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem
    Xiong, Chunguang
    Xie, Manting
    Luo, Fusheng
    Su, Hongling
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 90 - 99
  • [25] Residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems
    Ray, Tanushree
    Sinha, Rajen Kumar
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2935 - 2962
  • [26] A posteriori error estimates for mixed finite element approximations of parabolic problems
    Larson, Mats G.
    Malqvist, Axel
    [J]. NUMERISCHE MATHEMATIK, 2011, 118 (01) : 33 - 48
  • [27] A posteriori error estimates for mixed finite element approximations of elliptic problems
    Mats G. Larson
    Axel Målqvist
    [J]. Numerische Mathematik, 2008, 108 : 487 - 500
  • [28] A posteriori error estimates for mixed finite element approximations of elliptic problems
    Larson, Mats G.
    Malqvist, Axel
    [J]. NUMERISCHE MATHEMATIK, 2008, 108 (03) : 487 - 500
  • [29] A posteriori error estimates for mixed finite element approximations of parabolic problems
    Mats G. Larson
    Axel Målqvist
    [J]. Numerische Mathematik, 2011, 118 : 33 - 48
  • [30] Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems
    Huipo Liu
    Wei Gong
    Shuanghu Wang
    Ningning Yan
    [J]. BIT Numerical Mathematics, 2013, 53 : 665 - 687