NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
|
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
  • [31] A New Adaptive Mixed Finite Element Method Based on Residual Type A Posterior Error Estimates for the Stokes Eigenvalue Problem
    Han, Jiayu
    Zhang, Zhimin
    Yang, Yidu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (01) : 31 - 53
  • [32] An improved two-grid finite element method for the Steklov eigenvalue problem
    Weng, Zhifeng
    Zhai, Shuying
    Feng, Xinlong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) : 2962 - 2972
  • [33] ERROR-ESTIMATES OF 2 NONCONFORMING FINITE-ELEMENTS FOR THE OBSTACLE PROBLEM
    WANG, LH
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1986, 4 (01) : 11 - 20
  • [34] A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem
    Daniele Boffi
    Lucia Gastaldi
    Rodolfo Rodríguez
    Ivana Šebestová
    Journal of Scientific Computing, 2019, 78 : 1250 - 1271
  • [35] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271
  • [36] Simulation of a nonlinear Steklov eigenvalue problem using finite-element approximation
    Kumar P.
    Kumar M.
    Computational Mathematics and Modeling, 2010, 21 (1) : 109 - 116
  • [37] Conforming Finite Element Approximations for a Fourth-Order Steklov Eigenvalue Problem
    Bi, Hai
    Ren, Shixian
    Yang, Yidu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [38] A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
    Han, Xiaole
    Li, Yu
    Xie, Hehu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (03) : 383 - 405
  • [39] Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain
    Tan, Ting
    An, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (10) : 3764 - 3778
  • [40] An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem
    Xu, Fei
    Yue, Meiling
    Huang, Qiumei
    Ma, Hongkun
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 210 - 227