NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM

被引:0
|
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
Yu, Yuanyuan [1 ]
Han, Jiayu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Steklov eigenvalue problem; Concave polygonal domain; Linear conforming finite element; Nonconforming Crouzeix-Raviart element; Error estimates; APPROXIMATION;
D O I
10.4208/jcm.1703-m2014-0188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the finite elements approximation for the Steklov eigenvalue problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix-Raviart element, and prove a new and optimal error estimate in parallel to.parallel to(0,theta Omega) for the eigenfunction of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis.
引用
收藏
页码:682 / 692
页数:11
相关论文
共 50 条
  • [21] A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem
    Wang, Gang
    Meng, Jian
    Wang, Ying
    Mei, Liquan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3675 - 3710
  • [22] Steklov eigenvalue problem and its applications An accurate a posteriori error estimator for the
    Fei Xu
    Qiumei Huang
    ScienceChina(Mathematics), 2021, 64 (03) : 623 - 638
  • [23] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Xu, Fei
    Huang, Qiumei
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (03) : 623 - 638
  • [24] An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
    Fei Xu
    Qiumei Huang
    Science China Mathematics, 2021, 64 : 623 - 638
  • [25] Computable Error Estimates for a Nonsymmetric Eigenvalue Problem
    Xie, Hehu
    Xie, Manting
    Yin, Xiaobo
    Yue, Meiling
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (03) : 583 - 602
  • [26] Error estimates for linear finite elements on Bakhvalov-type meshes
    Roos H.-G.
    Applications of Mathematics, 2006, 51 (1) : 63 - 72
  • [27] The adaptive finite element method for the Steklov eigenvalue problem in inverse scattering
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    OPEN MATHEMATICS, 2020, 18 : 216 - 236
  • [28] Error estimates for a mixed finite element method for the Maxwell's transmission eigenvalue problem
    Wang, Chao
    Cui, Jintao
    Sun, Jiguang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (03) : 1185 - 1200
  • [29] Error estimates for mixed finite element approximations to a linear Stefan problem
    Ann M.H.
    Shin J.Y.
    Journal of Applied Mathematics and Computing, 2004, 15 (1-2) : 251 - 264
  • [30] Error estimates of the quadrature finite element method with biquadratic finite elements for elliptic eigenvalue problems in the square domain
    Solov'ev, S. I.
    Solov'ev, P. S.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158