Approximation of damped quadratic eigenvalue problem by dimension reduction

被引:3
|
作者
Truhar, Ninoslav [1 ]
Tomljanovic, Zoran [1 ]
Puvaca, Matea [1 ]
机构
[1] Josip Juraj Strossmayer Univ Osijek, Dept Math, Osijek, Croatia
关键词
Dimension reduction; Parameter dependent eigenvalue problem; Tracking eigenvalues; Eigenvalue error bounds; SYSTEMS; PERTURBATION;
D O I
10.1016/j.amc.2018.10.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an approach to the efficient calculation of all or just one important part of the eigenvalues of the parameter dependent quadratic eigenvalue problem (lambda(2)(v)M + lambda(v)D(v) K)x(v) = 0, where M, K are positive definite Hermitian n x n matrices and D(v) is an n x n Hermitian semidefinite matrix which depends on a damping parameter vector v = [ v(1) ... v(k) ] is an element of R-+(k). With the new approach one can efficiently (and accurately enough) calculate all (or just part of the) eigenvalues even for the case when the parameters v(i), which in this paper represent damping viscosities, are of the modest magnitude. Moreover, we derive two types of approximations with corresponding error bounds. The quality of error bounds as well as the performance of the achieved eigenvalue tracking are illustrated in several numerical experiments. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [41] Numerical solution of a quadratic eigenvalue problem
    Guo, CH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 : 391 - 406
  • [42] Solutions to a quadratic inverse eigenvalue problem
    Cai, Yun-Feng
    Kuo, Yuen-Cheng
    Lin, Wen-Wei
    Xu, Shu-Fang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) : 1590 - 1606
  • [43] INVERSE ITERATION FOR THE QUADRATIC EIGENVALUE PROBLEM
    LEUNG, AYT
    JOURNAL OF SOUND AND VIBRATION, 1988, 124 (02) : 249 - 267
  • [44] Deep Gaussian Process for the Approximation of a Quadratic Eigenvalue Problem: Application to Friction-Induced Vibration
    Sadet, Jeremy
    Massa, Franck
    Tison, Thierry
    Talbi, El-Ghazali
    Turpin, Isabelle
    VIBRATION, 2022, 5 (02): : 344 - 369
  • [45] Numerical approximation based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem
    Jiang, Jiantao
    An, Jing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17367 - 17387
  • [46] QUADRATIC PROBLEM WITH EIGENVALUES AND APPROXIMATION
    LEMORDANT, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (17): : 857 - 860
  • [47] Approximation of the Quadratic Knapsack Problem
    Taylor, Richard
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 495 - 497
  • [48] Approximation of the Quadratic Knapsack Problem
    Pferschy, Ulrich
    Schauer, Joachim
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (02) : 308 - 318
  • [49] PERTURBATION METHOD FOR THE EIGENVALUE PROBLEM OF LIGHTLY DAMPED SYSTEMS
    KWAK, MK
    JOURNAL OF SOUND AND VIBRATION, 1993, 160 (02) : 351 - 357
  • [50] A NONLINEAR EIGENVALUE PROBLEM IN RATIONAL APPROXIMATION
    KRABS, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1967, S 47 : T57 - &