Approximation of damped quadratic eigenvalue problem by dimension reduction

被引:3
|
作者
Truhar, Ninoslav [1 ]
Tomljanovic, Zoran [1 ]
Puvaca, Matea [1 ]
机构
[1] Josip Juraj Strossmayer Univ Osijek, Dept Math, Osijek, Croatia
关键词
Dimension reduction; Parameter dependent eigenvalue problem; Tracking eigenvalues; Eigenvalue error bounds; SYSTEMS; PERTURBATION;
D O I
10.1016/j.amc.2018.10.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an approach to the efficient calculation of all or just one important part of the eigenvalues of the parameter dependent quadratic eigenvalue problem (lambda(2)(v)M + lambda(v)D(v) K)x(v) = 0, where M, K are positive definite Hermitian n x n matrices and D(v) is an n x n Hermitian semidefinite matrix which depends on a damping parameter vector v = [ v(1) ... v(k) ] is an element of R-+(k). With the new approach one can efficiently (and accurately enough) calculate all (or just part of the) eigenvalues even for the case when the parameters v(i), which in this paper represent damping viscosities, are of the modest magnitude. Moreover, we derive two types of approximations with corresponding error bounds. The quality of error bounds as well as the performance of the achieved eigenvalue tracking are illustrated in several numerical experiments. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [31] THE QUADRATIC ARNOLDI METHOD FOR THE SOLUTION OF THE QUADRATIC EIGENVALUE PROBLEM
    Meerbergen, Karl
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1463 - 1482
  • [32] TENSOR QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Li, Ya
    Du, Shouqiang
    Zhang, Liping
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 251 - 268
  • [33] On a class of inverse quadratic eigenvalue problem
    Yuan, Yongxin
    Dai, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2662 - 2669
  • [34] SOLUTION OF A COMPLEX QUADRATIC EIGENVALUE PROBLEM
    GIGNAC, DA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (01) : 99 - 106
  • [35] On Parameterised Quadratic Inverse Eigenvalue Problem
    Xiang, Meiling
    Dai, Hua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 185 - 200
  • [36] ON THE INVERSE SYMMETRIC QUADRATIC EIGENVALUE PROBLEM
    Lancaster, Peter
    Zaballa, Ion
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (01) : 254 - 278
  • [37] On a Quadratic Eigenvalue Problem and its Applications
    Ferihe Atalan
    Gusein Sh. Guseinov
    Mediterranean Journal of Mathematics, 2013, 10 : 91 - 109
  • [38] On the symmetric quadratic eigenvalue complementarity problem
    Fernandes, Luis M.
    Judice, Joaquim J.
    Fukushima, Masao
    Iusem, Alfredo
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 751 - 770
  • [39] On a Quadratic Eigenvalue Problem and its Applications
    Atalan, Ferihe
    Guseinov, Gusein Sh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 91 - 109
  • [40] OSCILLATION THEORY FOR A QUADRATIC EIGENVALUE PROBLEM
    Browne, Patrick J.
    Watson, Bruce A.
    QUAESTIONES MATHEMATICAE, 2008, 31 (04) : 345 - 357