Approximation of damped quadratic eigenvalue problem by dimension reduction

被引:3
|
作者
Truhar, Ninoslav [1 ]
Tomljanovic, Zoran [1 ]
Puvaca, Matea [1 ]
机构
[1] Josip Juraj Strossmayer Univ Osijek, Dept Math, Osijek, Croatia
关键词
Dimension reduction; Parameter dependent eigenvalue problem; Tracking eigenvalues; Eigenvalue error bounds; SYSTEMS; PERTURBATION;
D O I
10.1016/j.amc.2018.10.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an approach to the efficient calculation of all or just one important part of the eigenvalues of the parameter dependent quadratic eigenvalue problem (lambda(2)(v)M + lambda(v)D(v) K)x(v) = 0, where M, K are positive definite Hermitian n x n matrices and D(v) is an n x n Hermitian semidefinite matrix which depends on a damping parameter vector v = [ v(1) ... v(k) ] is an element of R-+(k). With the new approach one can efficiently (and accurately enough) calculate all (or just part of the) eigenvalues even for the case when the parameters v(i), which in this paper represent damping viscosities, are of the modest magnitude. Moreover, we derive two types of approximations with corresponding error bounds. The quality of error bounds as well as the performance of the achieved eigenvalue tracking are illustrated in several numerical experiments. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [21] Backward error analysis of linearizing-balancing strategies for heavily damped quadratic eigenvalue problem
    Chen, Hongjia
    Du, Lei
    Cao, Zongqi
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [22] On a quadratic inverse eigenvalue problem
    Cai, Yunfeng
    Xu, Shufang
    INVERSE PROBLEMS, 2009, 25 (08)
  • [24] THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM
    Liang, Xin
    Li, Ren-Cang
    FORUM OF MATHEMATICS SIGMA, 2015, 3
  • [25] A Controlled Noise Reduction Wiener Filter Based on the Quadratic Eigenvalue Problem
    Pan, Ningning
    Benesty, Jacob
    Chen, Jingdong
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1990 - 1994
  • [26] On the quadratic eigenvalue complementarity problem
    Bras, Carmo P.
    Iusem, Alfredo N.
    Judice, Joaquim J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (02) : 153 - 171
  • [27] LINEARIZATION OF THE QUADRATIC EIGENVALUE PROBLEM
    AFOLABI, D
    COMPUTERS & STRUCTURES, 1987, 26 (06) : 1039 - 1040
  • [28] On the quadratic eigenvalue complementarity problem
    Carmo P. Brás
    Alfredo N. Iusem
    Joaquim J. Júdice
    Journal of Global Optimization, 2016, 66 : 153 - 171
  • [29] Separation of the spectrum of quadratic eigenvalue problems for damped dynamical systems
    Trzaska, ZW
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS, AND INFORMATICS, VOL XVI, PROCEEDINGS, 2004, : 208 - 213
  • [30] Robust partial quadratic eigenvalue assignment for the damped vibroacoustic system
    Zhao, Kang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 162