On the quadratic eigenvalue complementarity problem

被引:0
|
作者
Carmo P. Brás
Alfredo N. Iusem
Joaquim J. Júdice
机构
[1] Universidade Nova de Lisboa,Departamento de Matemática, Faculdade de Ciências e Tecnologia
[2] Instituto de Matématica Pura e Aplicada (IMPA),undefined
[3] Instituto de Telecomunicações,undefined
来源
关键词
Eigenvalue problems; Complementarity problems; Nonlinear programming; Global optimization; 65F15; 90C33; 90C30; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce several new results on the Quadratic Eigenvalue Complementarity Problem (QEiCP), focusing on the nonsymmetric case, i.e., without making symmetry assumptions on the matrices defining the problem. First we establish a new sufficient condition for existence of solutions of this problem, which is somewhat more manageable than previously existent ones. This condition works through the introduction of auxiliary variables which leads to the reduction of QEiCP to an Eigenvalue Complementarity Problem in higher dimension. Hence, this reduction suggests a new strategy for solving QEiCP, which is also analyzed in the paper. We also present an upper bound for the number of solutions of QEiCP and exhibit some examples of instances of QEiCP whose solution set has large cardinality, without attaining though the just mentioned upper bound. We also investigate the numerical solution of the QEiCP by exploiting a nonlinear programming and a variational inequality formulations of QEiCP. Some numerical experiments are reported and illustrate the benefits and drawbacks of using these formulations for solving the QEiCP in practice.
引用
收藏
页码:153 / 171
页数:18
相关论文
共 50 条
  • [1] On the quadratic eigenvalue complementarity problem
    Bras, Carmo P.
    Iusem, Alfredo N.
    Judice, Joaquim J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (02) : 153 - 171
  • [2] TENSOR QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Li, Ya
    Du, Shouqiang
    Zhang, Liping
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 251 - 268
  • [3] On the symmetric quadratic eigenvalue complementarity problem
    Fernandes, Luis M.
    Judice, Joaquim J.
    Fukushima, Masao
    Iusem, Alfredo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 751 - 770
  • [4] On the numerical solution of the quadratic eigenvalue complementarity problem
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 721 - 747
  • [5] On the numerical solution of the quadratic eigenvalue complementarity problem
    Alfredo N. Iusem
    Joaquim J. Júdice
    Valentina Sessa
    Hanif D. Sherali
    [J]. Numerical Algorithms, 2016, 72 : 721 - 747
  • [6] Solving the Quadratic Eigenvalue Complementarity Problem by DC Programming
    Niu, Yi-Shuai
    Judice, Joaquim
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 203 - 214
  • [7] THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 475 - 500
  • [8] On the Quadratic Eigenvalue Complementarity Problem over a general convex cone
    Bras, Carmo P.
    Fukushima, Masao
    Iusem, Alfredo N.
    Judice, Joaquim J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 594 - 608
  • [9] THE SEQUENTIAL QUADRATIC PROGRAMMING FOR SYMMETRIC PARETO EIGENVALUE COMPLEMENTARITY PROBLEM
    Zhu, Lin
    Leit, Yuan
    Xie, Jiaxin
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (04): : 579 - 606
  • [10] Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem
    Judice, Joaquim
    Sessa, Valentina
    Fukushima, Masao
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 545 - 573