THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM

被引:0
|
作者
Iusem, Alfredo N. [1 ]
Judice, Joaquim J. [2 ]
Sessa, Valentina [3 ]
Sherali, Hanif D. [4 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Inst Telecomun Oes Portugal, R&D Unit 5000, Lisbon, Portugal
[3] Janerio UERJ, Rua Sao Francisco Xavier 524, Maracana, Brazil
[4] Virginia Tech, Syst Engn, Grado Dept Ind, Blacksburg, VA USA
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 03期
关键词
eigenvalue problems; complementarity problems; nonlinear programming; global optimization; reformulation-linearization technique; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate the solution of the Second-Order Cone Quadratic Eigenvalue Complementarity Problem (SOCQEiCP), which has a solution under reasonable assumptions on the matrices included in its definition. A Nonlinear Programming Problem (NLP) formulation of the SOCQEiCP is introduced. A necessary and sufficient condition for a stationary point (SP) of NLP to be a solution of SOCQEiCP is established. This condition indicates that, in many cases, the computation of a single SP of NLP is sufficient for solving SOCQEiCP. In order to compute a global minimum of NLP for the general case, we develop an enumerative method based on the Reformulation-Linearization Technique and prove its convergence. For computational effectiveness, we also introduce a hybrid method that combines the enumerative algorithm and a semi-smooth Newton method. Computational experience on the solution of a set of test problems demonstrates the efficacy of the proposed hybrid method for solving SOCQEiCP.
引用
收藏
页码:475 / 500
页数:26
相关论文
共 50 条
  • [1] The second-order cone eigenvalue complementarity problem
    Fernandes, Luis M.
    Fukushima, Masao
    Judice, Joaquim J.
    Sherali, Hanif D.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (01): : 24 - 52
  • [2] A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
    Samir Adly
    Hadia Rammal
    [J]. Journal of Optimization Theory and Applications, 2015, 165 : 563 - 585
  • [3] A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
    Adly, Samir
    Rammal, Hadia
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (02) : 563 - 585
  • [4] A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors
    Hou J.-J.
    Ling C.
    He H.-J.
    [J]. He, Hong-Jin (hehjmath@hdu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (05): : 45 - 64
  • [5] A continuation method for the linear second-order cone complementarity problem
    Xia, Y
    Peng, JM
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 290 - 300
  • [6] On the Range of the Pseudomonotone Second-Order Cone Linear Complementarity Problem
    Yang, Wei Hong
    Zhang, Lei-Hong
    Shen, Chungen
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (02) : 504 - 522
  • [7] On the Range of the Pseudomonotone Second-Order Cone Linear Complementarity Problem
    Wei Hong Yang
    Lei-Hong Zhang
    Chungen Shen
    [J]. Journal of Optimization Theory and Applications, 2017, 173 : 504 - 522
  • [8] A descent method for a reformulation of the second-order cone complementarity problem
    Chen, Jein-Shan
    Pan, Shaohua
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (02) : 547 - 558
  • [9] A regularization smoothing method for second-order cone complementarity problem
    Zhang, Xiangsong
    Liu, Sanyang
    Liu, Zhenhua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 731 - 740
  • [10] A smoothing Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    [J]. APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 223 - 247