A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems

被引:21
|
作者
Adly, Samir [1 ]
Rammal, Hadia [1 ]
机构
[1] Univ Limoges, CNRS, XLIM UMR 7252, F-87060 Limoges, France
关键词
Lorentz cone; Second-order cone eigenvalue complementarity problem; Semismooth Newton method; Lattice Projection Method; UNILATERAL CONTACT; ELASTIC-SYSTEMS; NEWTON METHODS; STABILITY; OPTIMIZATION;
D O I
10.1007/s10957-014-0645-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study numerical methods for solving eigenvalue complementarity problems involving the product of second-order cones (or Lorentz cones). We reformulate such problem to find the roots of a semismooth function. An extension of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue complementarity problem is proposed. The LPMis compared to the semismooth-Newton methods, associated to the Fischer-Burmeister and the natural residual functions. The performance profiles highlight the efficiency of the LPM. A globalization of these methods, based on the smoothing and regularization approaches, are discussed.
引用
收藏
页码:563 / 585
页数:23
相关论文
共 50 条
  • [1] A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
    Samir Adly
    Hadia Rammal
    Journal of Optimization Theory and Applications, 2015, 165 : 563 - 585
  • [2] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    Ni, Guyan
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (03) : 715 - 732
  • [3] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Guyan Ni
    Journal of Global Optimization, 2021, 79 : 715 - 732
  • [4] The second-order cone eigenvalue complementarity problem
    Fernandes, Luis M.
    Fukushima, Masao
    Judice, Joaquim J.
    Sherali, Hanif D.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (01): : 24 - 52
  • [5] A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors
    Hou J.-J.
    Ling C.
    He H.-J.
    He, Hong-Jin (hehjmath@hdu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (05): : 45 - 64
  • [6] Smoothing penalty approach for solving second-order cone complementarity problems
    Nguyen, Chieu Thanh
    Alcantara, Jan Harold
    Hao, Zijun
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (01) : 39 - 58
  • [7] THE SECOND-ORDER CONE QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 475 - 500
  • [8] Smoothing Homotopy Method for Solving Second-Order Cone Complementarity Problem
    Fan, Xiaona
    Zeng, Min
    Jiang, Li
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (05)
  • [9] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Jingyong Tang
    Jinchuan Zhou
    Journal of Global Optimization, 2021, 80 : 415 - 438
  • [10] A smoothing quasi-Newton method for solving general second-order cone complementarity problems
    Tang, Jingyong
    Zhou, Jinchuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (02) : 415 - 438