A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems

被引:21
|
作者
Adly, Samir [1 ]
Rammal, Hadia [1 ]
机构
[1] Univ Limoges, CNRS, XLIM UMR 7252, F-87060 Limoges, France
关键词
Lorentz cone; Second-order cone eigenvalue complementarity problem; Semismooth Newton method; Lattice Projection Method; UNILATERAL CONTACT; ELASTIC-SYSTEMS; NEWTON METHODS; STABILITY; OPTIMIZATION;
D O I
10.1007/s10957-014-0645-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study numerical methods for solving eigenvalue complementarity problems involving the product of second-order cones (or Lorentz cones). We reformulate such problem to find the roots of a semismooth function. An extension of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue complementarity problem is proposed. The LPMis compared to the semismooth-Newton methods, associated to the Fischer-Burmeister and the natural residual functions. The performance profiles highlight the efficiency of the LPM. A globalization of these methods, based on the smoothing and regularization approaches, are discussed.
引用
收藏
页码:563 / 585
页数:23
相关论文
共 50 条
  • [41] A regularization smoothing method for second-order cone complementarity problem
    Zhang, Xiangsong
    Liu, Sanyang
    Liu, Zhenhua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 731 - 740
  • [42] A smoothing Newton method for the second-order cone complementarity problem
    Jingyong Tang
    Guoping He
    Li Dong
    Liang Fang
    Jinchuan Zhou
    Applications of Mathematics, 2013, 58 : 223 - 247
  • [43] A smoothing Newton method for the second-order cone complementarity problem
    Tang, Jingyong
    He, Guoping
    Dong, Li
    Fang, Liang
    Zhou, Jinchuan
    APPLICATIONS OF MATHEMATICS, 2013, 58 (02) : 223 - 247
  • [44] A new model for solving stochastic second-order cone complementarity problem and its convergence analysis
    Luo, Meiju
    Zhang, Caihua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [45] The GUS-property of second-order cone linear complementarity problems
    Yang, Wei Hong
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 295 - 317
  • [46] The GUS-property of second-order cone linear complementarity problems
    Wei Hong Yang
    Xiaoming Yuan
    Mathematical Programming, 2013, 141 : 295 - 317
  • [47] NEURAL NETWORKS FOR SOLVING SECOND-ORDER CONE PROGRAMS BASED ON COMPLEMENTARITY FUNCTIONS
    Chen, Jein-Shan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (10) : 1621 - 1641
  • [48] TWO APPROACHES FOR SOLVING MATHEMATICAL PROGRAMS WITH SECOND-ORDER CONE COMPLEMENTARITY CONSTRAINTS
    Zhu, Xi-De
    Pang, Li-Ping
    Lin, Gui-Hua
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (03) : 951 - 968
  • [49] A second-order perturbation method for fuzzy eigenvalue problems
    Guo, Mengwu
    Zhong, Hongzhi
    You, Kuan
    ENGINEERING COMPUTATIONS, 2016, 33 (02) : 306 - 327
  • [50] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Narushima, Yasushi
    Sagara, Nobuko
    Ogasawara, Hideho
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) : 79 - 101