A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems

被引:21
|
作者
Adly, Samir [1 ]
Rammal, Hadia [1 ]
机构
[1] Univ Limoges, CNRS, XLIM UMR 7252, F-87060 Limoges, France
关键词
Lorentz cone; Second-order cone eigenvalue complementarity problem; Semismooth Newton method; Lattice Projection Method; UNILATERAL CONTACT; ELASTIC-SYSTEMS; NEWTON METHODS; STABILITY; OPTIMIZATION;
D O I
10.1007/s10957-014-0645-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study numerical methods for solving eigenvalue complementarity problems involving the product of second-order cones (or Lorentz cones). We reformulate such problem to find the roots of a semismooth function. An extension of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue complementarity problem is proposed. The LPMis compared to the semismooth-Newton methods, associated to the Fischer-Burmeister and the natural residual functions. The performance profiles highlight the efficiency of the LPM. A globalization of these methods, based on the smoothing and regularization approaches, are discussed.
引用
收藏
页码:563 / 585
页数:23
相关论文
共 50 条