Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem

被引:1
|
作者
Judice, Joaquim [1 ]
Sessa, Valentina [2 ]
Fukushima, Masao [3 ]
机构
[1] FCTUC DEEC Polo II Univ Coimbra, Inst Telecomunicacoes, P-3030290 Coimbra, Portugal
[2] PSL Res Univ, CMA Ctr Math Appl, MINES ParisTech, Sophia Antipolis, France
[3] Kyoto Coll Grad Studies Informat, Kyoto, Japan
关键词
Fractional quadratic programming; Quadratic programming; Eigenvalue problems; Complementarity problems; LINE-SEARCH; ALGORITHM;
D O I
10.1007/s10957-022-02019-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce an implementation of Dinkelbach's algorithm for computing a global maximum of a fractional linear quadratic program (FLQP) on the simplex that employs an efficient block principal pivoting algorithm in each iteration. A new sequential FLQP algorithm is introduced for computing a stationary point (SP) of a fractional quadratic program (FQP) on the simplex. Global convergence for this algorithm is established. This sequential algorithm is recommended for the solution of the symmetric eigenvalue complementarity problem (EiCP), as this problem is equivalent to the computation of an SP of an FQP on the simplex. Computational experience reported in this paper indicates that the implementation of Dinkelbach's method for the FLQP and the sequential FLQP algorithm are quite efficient in practice. An extension of the sequential FLQP algorithm for solving the nonsymmetric EiCP is also introduced. Since this method solves a special variational inequality (VI) problem in each iteration, it can be considered as a sequential VI algorithm. Although the convergence of this algorithm has yet to be established, preliminary computational experience indicates that the sequential VI algorithm is quite a promising technique for the solution of the nonsymmetric EiCP.
引用
收藏
页码:545 / 573
页数:29
相关论文
共 50 条
  • [1] Solution of Fractional Quadratic Programs on the Simplex and Application to the Eigenvalue Complementarity Problem
    Joaquim Júdice
    Valentina Sessa
    Masao Fukushima
    [J]. Journal of Optimization Theory and Applications, 2022, 193 : 545 - 573
  • [2] On the numerical solution of the quadratic eigenvalue complementarity problem
    Iusem, Alfredo N.
    Judice, Joaquim J.
    Sessa, Valentina
    Sherali, Hanif D.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 721 - 747
  • [3] On the numerical solution of the quadratic eigenvalue complementarity problem
    Alfredo N. Iusem
    Joaquim J. Júdice
    Valentina Sessa
    Hanif D. Sherali
    [J]. Numerical Algorithms, 2016, 72 : 721 - 747
  • [4] On the quadratic eigenvalue complementarity problem
    Carmo P. Brás
    Alfredo N. Iusem
    Joaquim J. Júdice
    [J]. Journal of Global Optimization, 2016, 66 : 153 - 171
  • [5] On the quadratic eigenvalue complementarity problem
    Bras, Carmo P.
    Iusem, Alfredo N.
    Judice, Joaquim J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (02) : 153 - 171
  • [6] TENSOR QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Li, Ya
    Du, Shouqiang
    Zhang, Liping
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 251 - 268
  • [7] On the symmetric quadratic eigenvalue complementarity problem
    Fernandes, Luis M.
    Judice, Joaquim J.
    Fukushima, Masao
    Iusem, Alfredo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 751 - 770
  • [8] On the Solution of the Inverse Eigenvalue Complementarity Problem
    Carmo P. Brás
    Joaquim J. Júdice
    Hanif D. Sherali
    [J]. Journal of Optimization Theory and Applications, 2014, 162 : 88 - 106
  • [9] On the Solution of the Inverse Eigenvalue Complementarity Problem
    Bras, Carmo P.
    Judice, Joaquim J.
    Sherali, Hanif D.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (01) : 88 - 106
  • [10] Solving the Quadratic Eigenvalue Complementarity Problem by DC Programming
    Niu, Yi-Shuai
    Judice, Joaquim
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 203 - 214