Equivalent symmetric kernels of determinantal point processes

被引:1
|
作者
Stevens, Marco [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celeslijnenlaan 2002 Box 2400, B-3001 Leuven, Belgium
关键词
Determinantal point processes; kernels; ORTHOGONAL POLYNOMIALS; STRONG ASYMPTOTICS; BESSEL;
D O I
10.1142/S2010326321500271
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Determinantal point processes are point processes whose correlation functions are given by determinants of matrices. The entries of these matrices are given by one fixed function of two variables, which is called the kernel of the point process. It is well known that there are different kernels that induce the same correlation functions. We classify all the possible transformations of a kernel that leave the induced correlation functions invariant, restricting to the case of symmetric kernels.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] QUASI-SYMMETRIES OF DETERMINANTAL POINT PROCESSES
    Bufetov, Alexander I.
    ANNALS OF PROBABILITY, 2018, 46 (02): : 956 - 1003
  • [42] Conditional intensity and Gibbsianness of determinantal point processes
    Georgii, HO
    Yoo, HJ
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 55 - 84
  • [43] Average characteristic polynomials of determinantal point processes
    Hardy, Adrien
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 283 - 303
  • [44] Determinantal Point Processes and Fermion Quasifree States
    Olshanski, Grigori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 507 - 555
  • [45] On the mean projection theorem for determinantal point processes
    Kassel, Adrien
    Levy, Thierry
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 497 - 504
  • [46] Tweet Timeline Generation with Determinantal Point Processes
    Yao, Jin-ge
    Fan, Feifan
    Zhao, Wayne Xin
    Wan, Xiaojun
    Chang, Edward
    Xiao, Jianguo
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3080 - 3086
  • [47] Online MAP Inference of Determinantal Point Processes
    Bhaskara, Aditya
    Karbasi, Amin
    Lattanzi, Silvio
    Zadimoghaddam, Morteza
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [48] Orbit measures and interlaced determinantal point processes
    Defosseux, Manon
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (13-14) : 783 - 788
  • [49] A note on tail triviality for determinantal point processes
    Lyons, Russell
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [50] Large-Margin Determinantal Point Processes
    Chao, Wei-Lun
    Gong, Boqing
    Grauman, Kristen
    Sha, Fei
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2015, : 191 - 200