Equivalent symmetric kernels of determinantal point processes

被引:1
|
作者
Stevens, Marco [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celeslijnenlaan 2002 Box 2400, B-3001 Leuven, Belgium
关键词
Determinantal point processes; kernels; ORTHOGONAL POLYNOMIALS; STRONG ASYMPTOTICS; BESSEL;
D O I
10.1142/S2010326321500271
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Determinantal point processes are point processes whose correlation functions are given by determinants of matrices. The entries of these matrices are given by one fixed function of two variables, which is called the kernel of the point process. It is well known that there are different kernels that induce the same correlation functions. We classify all the possible transformations of a kernel that leave the induced correlation functions invariant, restricting to the case of symmetric kernels.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Learning the Parameters of Determinantal Point Process Kernels
    Affandi, Raja Hafiz
    Fox, Emily B.
    Adams, Ryan P.
    Taskar, Ben
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1224 - 1232
  • [12] On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators
    Bornemann, Folkmar
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [13] Kronecker Determinantal Point Processes
    Mariet, Zelda
    Sra, Suvrit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [14] Projections of determinantal point processes
    Mazoyer, Adrien
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    SPATIAL STATISTICS, 2020, 38
  • [15] Dynamic Determinantal Point Processes
    Osogami, Takayuki
    Raymond, Rudy
    Goel, Akshay
    Shirai, Tomoyuki
    Maehara, Takanori
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3868 - 3875
  • [16] The ASEP and Determinantal Point Processes
    Alexei Borodin
    Grigori Olshanski
    Communications in Mathematical Physics, 2017, 353 : 853 - 903
  • [17] Testing Determinantal Point Processes
    Gatmiry, Khashayar
    Aliakbarpour, Maryam
    Jegelka, Stefanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [18] The ASEP and Determinantal Point Processes
    Borodin, Alexei
    Olshanski, Grigori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (02) : 853 - 903
  • [19] Determinantal Point Processes for Coresets
    Tremblay, Nicolas
    Barthelme, Simon
    Amblard, Pierre-Olivier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [20] Determinantal point processes for coresets
    Tremblay, Nicolas
    Barthelmé, Simon
    Amblard, Pierre-Olivier
    Journal of Machine Learning Research, 2019, 20