Equivalent symmetric kernels of determinantal point processes

被引:1
|
作者
Stevens, Marco [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celeslijnenlaan 2002 Box 2400, B-3001 Leuven, Belgium
关键词
Determinantal point processes; kernels; ORTHOGONAL POLYNOMIALS; STRONG ASYMPTOTICS; BESSEL;
D O I
10.1142/S2010326321500271
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Determinantal point processes are point processes whose correlation functions are given by determinants of matrices. The entries of these matrices are given by one fixed function of two variables, which is called the kernel of the point process. It is well known that there are different kernels that induce the same correlation functions. We classify all the possible transformations of a kernel that leave the induced correlation functions invariant, restricting to the case of symmetric kernels.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Strong Markov property of determinantal processes with extended kernels
    Osada, Hirofumi
    Tanemura, Hideki
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (01) : 186 - 208
  • [22] Determinantal identity for multilevel ensembles and finite determinantal point processes
    J. Harnad
    A. Yu. Orlov
    Analysis and Mathematical Physics, 2012, 2 : 105 - 121
  • [23] Determinantal identity for multilevel ensembles and finite determinantal point processes
    Harnad, J.
    Orlov, A. Yu.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 105 - 121
  • [24] Quantifying repulsiveness of determinantal point processes
    Biscio, Christophe Ange Napoleon
    Lavancier, Frederic
    BERNOULLI, 2016, 22 (04) : 2001 - 2028
  • [25] Difference operators and determinantal point processes
    Olshanski, Grigori
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (04) : 317 - 329
  • [26] Determinantal point processes in the flat limit
    Barthelme, Simon
    Tremblay, Nicolas
    Usevich, Konstantin
    Amblard, Pierre-Olivier
    BERNOULLI, 2023, 29 (02) : 957 - 983
  • [27] Learning Nonsymmetric Determinantal Point Processes
    Gartrell, Mike
    Brunel, Victor-Emmanuel
    Dohmatob, Elvis
    Krichene, Syrine
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [28] On simulation of continuous determinantal point processes
    Lavancier, Frederic
    Rubak, Ege
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [29] MONTE CARLO WITH DETERMINANTAL POINT PROCESSES
    Bardenet, Remi
    Hardy, Adrien
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 368 - 417
  • [30] Conditional Measures of Determinantal Point Processes
    A. I. Bufetov
    Functional Analysis and Its Applications, 2020, 54 : 7 - 20