Testing Determinantal Point Processes

被引:0
|
作者
Gatmiry, Khashayar [1 ]
Aliakbarpour, Maryam [2 ,3 ]
Jegelka, Stefanie [1 ]
机构
[1] MIT CSAIL, Cambridge, MA 02139 USA
[2] Univ Massachusetts Amherst, Amherst, MA USA
[3] Simons Inst Theory Comp, Berkeley, CA USA
关键词
BOUNDS; POLYNOMIALS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution q over the subsets of a ground set, we aim to distinguish whether q is a DPP distribution, or (sic)-far from all DPP distributions in '1-distance. In this work, we propose the first algorithm for testing DPPs. Furthermore, we establish a matching lower bound on the sample complexity of DPP testing, up to logarithmic factors. This lower bound also implies a new hardness result for the problem of testing the more general class of log-submodular distributions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Kronecker Determinantal Point Processes
    Mariet, Zelda
    Sra, Suvrit
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] Projections of determinantal point processes
    Mazoyer, Adrien
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    SPATIAL STATISTICS, 2020, 38
  • [3] Dynamic Determinantal Point Processes
    Osogami, Takayuki
    Raymond, Rudy
    Goel, Akshay
    Shirai, Tomoyuki
    Maehara, Takanori
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3868 - 3875
  • [4] The ASEP and Determinantal Point Processes
    Alexei Borodin
    Grigori Olshanski
    Communications in Mathematical Physics, 2017, 353 : 853 - 903
  • [5] The ASEP and Determinantal Point Processes
    Borodin, Alexei
    Olshanski, Grigori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (02) : 853 - 903
  • [6] Determinantal Point Processes for Coresets
    Tremblay, Nicolas
    Barthelme, Simon
    Amblard, Pierre-Olivier
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [7] Determinantal point processes for coresets
    Tremblay, Nicolas
    Barthelmé, Simon
    Amblard, Pierre-Olivier
    Journal of Machine Learning Research, 2019, 20
  • [8] Determinantal identity for multilevel ensembles and finite determinantal point processes
    J. Harnad
    A. Yu. Orlov
    Analysis and Mathematical Physics, 2012, 2 : 105 - 121
  • [9] Determinantal identity for multilevel ensembles and finite determinantal point processes
    Harnad, J.
    Orlov, A. Yu.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (02) : 105 - 121
  • [10] Quantifying repulsiveness of determinantal point processes
    Biscio, Christophe Ange Napoleon
    Lavancier, Frederic
    BERNOULLI, 2016, 22 (04) : 2001 - 2028