Testing Determinantal Point Processes

被引:0
|
作者
Gatmiry, Khashayar [1 ]
Aliakbarpour, Maryam [2 ,3 ]
Jegelka, Stefanie [1 ]
机构
[1] MIT CSAIL, Cambridge, MA 02139 USA
[2] Univ Massachusetts Amherst, Amherst, MA USA
[3] Simons Inst Theory Comp, Berkeley, CA USA
关键词
BOUNDS; POLYNOMIALS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determinantal point processes (DPPs) are popular probabilistic models of diversity. In this paper, we investigate DPPs from a new perspective: property testing of distributions. Given sample access to an unknown distribution q over the subsets of a ground set, we aim to distinguish whether q is a DPP distribution, or (sic)-far from all DPP distributions in '1-distance. In this work, we propose the first algorithm for testing DPPs. Furthermore, we establish a matching lower bound on the sample complexity of DPP testing, up to logarithmic factors. This lower bound also implies a new hardness result for the problem of testing the more general class of log-submodular distributions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Determinantal Point Processes for Machine Learning
    Kulesza, Alex
    Taskar, Ben
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 5 (2-3): : 123 - 286
  • [22] Tensorized Determinantal Point Processes for Recommendation
    Warlop, Romain
    Mary, Jeremie
    Gartrell, Mike
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1605 - 1615
  • [23] Determinantal Point Processes and Fermion Quasifree States
    Grigori Olshanski
    Communications in Mathematical Physics, 2020, 378 : 507 - 555
  • [24] Learning Determinantal Point Processes with Moments and Cycles
    Urschel, John
    Brunel, Victor-Emmanuel
    Moitra, Ankur
    Rigollet, Philippe
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [25] Functional summary statistics for point processes on the sphere with an application to determinantal point processes
    Moller, Jesper
    Rubak, Ege
    SPATIAL STATISTICS, 2016, 18 : 4 - 23
  • [26] QUASI-SYMMETRIES OF DETERMINANTAL POINT PROCESSES
    Bufetov, Alexander I.
    ANNALS OF PROBABILITY, 2018, 46 (02): : 956 - 1003
  • [27] Partial isometries, duality, and determinantal point processes
    Katori, Makoto
    Shirai, Tomoyuki
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (03)
  • [28] Conditional intensity and Gibbsianness of determinantal point processes
    Georgii, HO
    Yoo, HJ
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 55 - 84
  • [29] Average characteristic polynomials of determinantal point processes
    Hardy, Adrien
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 283 - 303
  • [30] Determinantal Point Processes and Fermion Quasifree States
    Olshanski, Grigori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 507 - 555