Large-Margin Determinantal Point Processes

被引:0
|
作者
Chao, Wei-Lun [1 ]
Gong, Boqing [1 ]
Grauman, Kristen [2 ]
Sha, Fei [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90089 USA
[2] Univ Texas Austin, Austin, TX 78701 USA
基金
美国国家科学基金会;
关键词
ENTROPY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determinantal point processes (DPPs) offer a powerful approach to modeling diversity in many applications where the goal is to select a diverse subset from a ground set of items. We study the problem of learning the parameters (i.e., the kernel matrix) of a DPP from labeled training data. In this paper, we develop a novel parameter estimation technique particularly tailored for DPPs based on the principle of large margin separation. In contrast to the state-of-the-art method of maximum likelihood estimation of the DPP parameters, our large-margin loss function explicitly models errors in selecting the target subsets, and it can be customized to trade off different types of errors (precision vs. recall). Extensive empirical studies validate our contributions, including applications on challenging document and video summarization, where flexibility in balancing different errors while training the summarization models is indispensable.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 50 条
  • [1] Large-Margin Supervised Hashing
    Zhang, Xiaopeng
    Zhang, Hui
    Chen, Yong
    Liu, Xianglong
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 259 - 269
  • [2] Multicategory Large-Margin Unified Machines
    Zhang, Chong
    Liu, Yufeng
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1349 - 1386
  • [3] Large-Margin Classification in Hyperbolic Space
    Cho, Hyunghoon
    DeMeo, Benjamin
    Peng, Jian
    Berger, Bonnie
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [4] Probability estimation for large-margin classifiers
    Wang, Junhui
    Shen, Xiaotong
    Liu, Yufeng
    [J]. BIOMETRIKA, 2008, 95 (01) : 149 - 167
  • [5] Comparison theorems on large-margin learning
    Benabid, Amina
    Fan, Jun
    Xiang, Dao-Hong
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (05)
  • [6] VARIABILITY REGULARIZATION IN LARGE-MARGIN CLASSIFICATION
    Mansjur, Dwi Sianto
    Wada, Ted S.
    Juang, Biing-Hwang
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1956 - 1959
  • [7] Large-Margin Convex Polytope Machine
    Kantchelian, Alex
    Tschantz, Michael Carl
    Huang, Ling
    Bartlett, Peter L.
    Joseph, Anthony D.
    Tygar, J. D.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [8] Multicategory large-margin unified machines
    Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
    不详
    [J]. J. Mach. Learn. Res., 2013, (1349-1386):
  • [9] Large-Margin Classification in Infinite Neural Networks
    Cho, Youngmin
    Saul, Lawrence K.
    [J]. NEURAL COMPUTATION, 2010, 22 (10) : 2678 - 2697
  • [10] Large-margin feature selection for monotonic classification
    Hu, Qinghua
    Pan, Weiwei
    Song, Yanping
    Yu, Daren
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 31 : 8 - 18