Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles

被引:10
|
作者
Abatangelo, Laura [1 ]
Felli, Veronica [2 ]
Noris, Benedetta [3 ]
Nys, Manon [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, Italy
[3] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[4] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Aharonov-Bohm operators; Almgren monotonicity formula; Spectral theory; SPECTRAL MINIMAL PARTITIONS; NODAL SETS; SCHRODINGER-OPERATORS; MAGNETIC-FIELD; DOMAINS; THEOREM;
D O I
10.1016/j.jfa.2017.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded planar domain. We establish a sharp relation between the rate of convergence of the eigenvalues as the singular pole is approaching a boundary point and the number of nodal lines of the eigenfunction of the limiting problem, i.e. of the Dirichlet-Laplacian, ending at that point. The proof relies on the construction of a limit profile depending on the direction along which the pole is moving, and on an Almgren-type monotonicity argument for magnetic operators. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2428 / 2487
页数:60
相关论文
共 50 条
  • [31] Schrodinger and Dirac operators with the Aharonov-Bohm and magnetic-solenoid fields
    Gitman, D. M.
    Tyutin, I. V.
    Voronov, B. L.
    PHYSICA SCRIPTA, 2012, 85 (04)
  • [32] Levinson's theorem and higher degree traces for Aharonov-Bohm operators
    Kellendonk, Johannes
    Pankrashkin, Konstantin
    Richard, Serge
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [33] ROLE OF BOUNDARY-CONDITIONS IN AHARONOV-BOHM EFFECT FOR PARTICLES WITH SPIN
    VOROPAEV, SA
    BORDAG, M
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1994, 105 (02): : 241 - 249
  • [34] Dynamical confinement for Schrödinger operators with magnetic potential and Aharonov-Bohm effect
    de Oliveira, C. R.
    Romano, R. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [35] Effect of varying magnetic field on the interference of electron beams: Aharonov-Bohm effect
    Ageev, AN
    Davydov, SY
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1996, 22 (04): : 70 - 72
  • [36] The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions
    Katsnelson, M. I.
    Nazaikinskii, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (03) : 1263 - 1277
  • [37] The Aharonov-Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions
    M. I. Katsnelson
    V. E. Nazaikinskii
    Theoretical and Mathematical Physics, 2012, 172 : 1263 - 1277
  • [38] POLES OF LOCAL CLASSICAL ACCELERATION AND SPATIAL SEPARATION IN THE NEUTRAL PARTICLE ANALOGS OF THE AHARONOV-BOHM PHASES
    CASELLA, RC
    PHYSICAL REVIEW LETTERS, 1994, 73 (22) : 2941 - 2945
  • [39] Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov-Bohm Hamiltonians on the Square with Application to Minimal Partitions
    Bonnaillie-Noel, V.
    Helffer, B.
    EXPERIMENTAL MATHEMATICS, 2011, 20 (03) : 304 - 322
  • [40] Pseudo-spin switches and Aharonov-Bohm effect for topological boundary modes
    Kawaguchi, Yuma
    Smirnova, Daria
    Komissarenko, Filipp
    Kiriushechkina, Svetlana
    Vakulenko, Anton
    Li, Mengyao
    Alu, Andrea
    Khanikaev, Alexander B.
    SCIENCE ADVANCES, 2024, 10 (15):