Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles

被引:10
|
作者
Abatangelo, Laura [1 ]
Felli, Veronica [2 ]
Noris, Benedetta [3 ]
Nys, Manon [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, Italy
[3] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[4] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Aharonov-Bohm operators; Almgren monotonicity formula; Spectral theory; SPECTRAL MINIMAL PARTITIONS; NODAL SETS; SCHRODINGER-OPERATORS; MAGNETIC-FIELD; DOMAINS; THEOREM;
D O I
10.1016/j.jfa.2017.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded planar domain. We establish a sharp relation between the rate of convergence of the eigenvalues as the singular pole is approaching a boundary point and the number of nodal lines of the eigenfunction of the limiting problem, i.e. of the Dirichlet-Laplacian, ending at that point. The proof relies on the construction of a limit profile depending on the direction along which the pole is moving, and on an Almgren-type monotonicity argument for magnetic operators. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2428 / 2487
页数:60
相关论文
共 50 条