Sharp boundary behavior of eigenvalues for Aharonov-Bohm operators with varying poles

被引:10
|
作者
Abatangelo, Laura [1 ]
Felli, Veronica [2 ]
Noris, Benedetta [3 ]
Nys, Manon [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 55, I-20125 Milan, Italy
[3] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[4] Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Aharonov-Bohm operators; Almgren monotonicity formula; Spectral theory; SPECTRAL MINIMAL PARTITIONS; NODAL SETS; SCHRODINGER-OPERATORS; MAGNETIC-FIELD; DOMAINS; THEOREM;
D O I
10.1016/j.jfa.2017.06.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the behavior of the eigenvalues of a magnetic Aharonov Bohm operator with half-integer circulation and Dirichlet boundary conditions in a bounded planar domain. We establish a sharp relation between the rate of convergence of the eigenvalues as the singular pole is approaching a boundary point and the number of nodal lines of the eigenfunction of the limiting problem, i.e. of the Dirichlet-Laplacian, ending at that point. The proof relies on the construction of a limit profile depending on the direction along which the pole is moving, and on an Almgren-type monotonicity argument for magnetic operators. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:2428 / 2487
页数:60
相关论文
共 50 条
  • [21] Inequalities à la Pólya for the Aharonov-Bohm eigenvalues of the disk
    Filonov, Nikolay
    Levitin, Michael
    Polterovich, Iosif
    Sher, David A.
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (02) : 597 - 618
  • [22] On the most general boundary conditions for the Aharonov-Bohm scattering of a Dirac particle: helicity and Aharonov-Bohm symmetry conservation
    Araujo, VS
    Coutinho, FAB
    Perez, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8859 - 8876
  • [23] Magnetic perturbations of anyonic and Aharonov-Bohm Schrodinger operators
    Correggi, Michele
    Fermi, Davide
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [24] Direct calculation of time varying Aharonov-Bohm effect
    Choudhury, S. Rai
    Mahajan, Shobhit
    PHYSICS LETTERS A, 2019, 383 (21) : 2467 - 2471
  • [25] Self-adjointness of Hamiltonian operators with Aharonov-Bohm gauge field and boundary condition
    Odaka, K
    Satoh, K
    Negishi, T
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 526 - 530
  • [26] Inverse boundary value problems and the Aharonov-Bohm effect
    Eskin, G
    INVERSE PROBLEMS, 2003, 19 (01) : 49 - 62
  • [27] A note on the boundary condition in the Aharonov-Bohm scattering for alpha=integer
    Li, CF
    PHYSICA B, 1996, 226 (04): : 406 - 408
  • [28] An asymptotic formula for energy eigenvalues in the bound-state Aharonov-Bohm effect
    Samandra, RA
    Healy, WP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (47): : 9547 - 9554
  • [29] Aharonov-Bohm effect in resonances of magnetic Schrodinger operators in two dimensions
    Tamura, Hideo
    KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) : 557 - 595
  • [30] Uniform resolvent estimates for Schrodinger operators in Aharonov-Bohm magnetic fields
    Gao, Xiaofen
    Wang, Jialu
    Zhang, Junyong
    Zheng, Jiqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 292 : 70 - 89