Levinson's theorem and higher degree traces for Aharonov-Bohm operators

被引:11
|
作者
Kellendonk, Johannes [1 ]
Pankrashkin, Konstantin [2 ]
Richard, Serge [3 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR5208, F-69622 Villeurbanne, France
[2] Univ Paris 11, CNRS, Lab Math Orsay, UMR 8628, F-91405 Orsay, France
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
基金
瑞士国家科学基金会;
关键词
D O I
10.1063/1.3582943
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study Levinson-type theorems for the family of Aharonov-Bohm models from different perspectives. The first one is purely analytical involving the explicit calculation of the wave-operators and allowing to determine precisely the various contributions to the left hand side of Levinson's theorem, namely, those due to the scattering operator, the terms at 0-energy and at energy +infinity. The second one is based on non-commutative topology revealing the topological nature of Levinson's theorem. We then include the parameters of the family into the topological description obtaining a new type of Levinson's theorem, a higher degree Levinson's theorem. In this context, the Chern number of a bundle defined by a family of projections on bound states is explicitly computed and related to the result of a 3-trace applied on the scattering part of the model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582943]
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Levinson theorem with the nonlocal Aharonov-Bohm effect
    Lin, DH
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [2] Levinson theorem for Aharonov-Bohm scattering in two dimensions
    Sheka, Denis D.
    Mertens, Franz G.
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [3] Optical theorem and Aharonov-Bohm scattering
    Panja, MM
    Bera, PK
    Talukdar, B
    PRAMANA-JOURNAL OF PHYSICS, 1995, 45 (06): : 499 - 509
  • [4] Optical theorem for Aharonov-Bohm scattering
    Sitenko, Yu A.
    Vlasii, N. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
  • [5] Eigenvalues variations for Aharonov-Bohm operators
    Lena, Corentin
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [6] Aharonov-Bohm effect, flat connections, and Green's theorem
    Aguilar, MA
    Socolovsky, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (05) : 839 - 860
  • [7] PERIODIC SCHRODINGER OPERATORS AND AHARONOV-BOHM HAMILTONIANS
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Nadirashvili, N.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 45 - 61
  • [8] On Aharonov-Bohm Operators with Two Colliding Poles
    Abatangelo, Laura
    Felli, Veronica
    Lena, Corentin
    ADVANCED NONLINEAR STUDIES, 2017, 17 (02) : 283 - 296
  • [9] ON THE EIGENVALUES OF AHARONOV-BOHM OPERATORS WITH VARYING POLES
    Bonnaillie-Noel, Virginie
    Noris, Benedetta
    Nys, Manon
    Terracini, Susanna
    ANALYSIS & PDE, 2014, 7 (06): : 1365 - 1395
  • [10] New formulae for the Aharonov-Bohm wave operators
    Richard, Serge
    SPECTRAL AND SCATTERING THEORY FOR QUANTUM MAGNETIC SYSTEMS, 2008, 500 : 159 - 168